Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Voice ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36774263

RESUMEN

Vocal fatigue refers to the feeling of tiredness and weakness of voice due to extended utilization. This paper investigates the effectiveness of neural embeddings for the detection of vocal fatigue. We compare x-vectors, ECAPA-TDNN, and wav2vec 2.0 embeddings on a corpus of academic spoken English. Low-dimensional mappings of the data reveal that neural embeddings capture information about the change in vocal characteristics of a speaker during prolonged voice usage. We show that vocal fatigue can be reliably predicted using all three types of neural embeddings after 40 minutes of continuous speaking when temporal smoothing and normalization are applied to the extracted embeddings. We employ support vector machines for classification and achieve accuracy scores of 81% using x-vectors, 85% using ECAPA-TDNN embeddings, and 82% using wav2vec 2.0 embeddings as input features. We obtain an accuracy score of 76%, when the trained system is applied to a different speaker and recording environment without any adaptation.

2.
PLoS One ; 10(4): e0125487, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909858

RESUMEN

The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Nitrógeno/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular/metabolismo , Fusarium/genética , Genoma Fúngico/genética , Mutación/genética , Proteínas Quinasas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología , Vacuolas/genética
3.
PLoS One ; 8(11): e80740, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260467

RESUMEN

In the plant pathogenic ascomycete Fusarium fujikuroi the synthesis of several economically important secondary metabolites (SM) depends on the nitrogen status of the cells. Of these SMs, gibberellin and bikaverin synthesis is subject to nitrogen catabolite repression (NCR) and is therefore only executed under nitrogen starvation conditions. How the signal of available nitrogen quantity and quality is sensed and transmitted to transcription factors is largely unknown. Earlier work revealed an essential regulatory role of the glutamine synthetase (GS) in the nitrogen regulation network and secondary metabolism as its deletion resulted in total loss of SM gene expression. Here we present extensive gene regulation studies of the wild type, the Δgln1 mutant and complementation strains of the gln1 deletion mutant expressing heterologous GS-encoding genes of prokaryotic and eukaryotic origin or 14 different F. fujikuroi gln1 copies with site-directed mutations. All strains were grown under different nitrogen conditions and characterized regarding growth, expression of NCR-responsive genes and biosynthesis of SM. We provide evidence for distinct roles of the GS in sensing and transducing the signals to NCR-responsive genes. Three site directed mutations partially restored secondary metabolism and GS-dependent gene expression, but not glutamine formation, demonstrating for the first time that the catalytic and regulatory roles of GS can be separated. The distinct mutant phenotypes show that the GS (1) participates in NH4 (+)-sensing and transducing the signal towards NCR-responsive transcription factors and their subsequent target genes; (2) affects carbon catabolism and (3) activates the expression of a distinct set of non-NCR GS-dependent genes. These novel insights into the regulatory role of the GS provide fascinating perspectives for elucidating regulatory roles of GS proteins of different organism in general.


Asunto(s)
Fusarium/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Carbono/metabolismo , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Alineación de Secuencia
4.
PLoS Pathog ; 9(6): e1003475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825955

RESUMEN

The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/fisiología , Estudio de Asociación del Genoma Completo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
5.
Eukaryot Cell ; 9(10): 1588-601, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729292

RESUMEN

In Fusarium fujikuroi, bikaverin (BIK) biosynthesis is subject to repression by nitrogen. Unlike most genes subject to nitrogen metabolite repression, it has been shown that transcription of bik biosynthetic genes is not AreA dependent. Searching for additional transcription factors that may be involved in nitrogen regulation, we cloned and characterized the orthologue of Aspergillus nidulans meaB, which encodes a bZIP transcription factor. Two transcripts are derived from F. fujikuroi meaB: the large transcript (meaB(L)) predominates under nitrogen-sufficient conditions and the smaller transcript (meaB(S)) under nitrogen limitation, in an AreA-dependent manner. MeaB is specifically translocated to the nucleus under nitrogen-sufficient conditions in both F. fujikuroi and A. nidulans. Deletion of meaB resulted in partial upregulation of several nitrogen-regulated genes, but only in the ΔmeaB ΔareA double mutant were the bikaverin genes significantly upregulated in the presence of glutamine. These data demonstrate that MeaB and AreA coordinately mediate nitrogen metabolite repression and, importantly, that independently of AreA, MeaB can mediate nitrogen metabolite repression at specific loci in F. fujikuroi.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Nitrógeno/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xantonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...