Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724949

RESUMEN

Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.


Asunto(s)
Actinas , Fibroblastos , Animales , Humanos , Ratones , Actinas/metabolismo , Fibroblastos/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo
2.
Ecol Evol ; 13(1): e9764, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713486

RESUMEN

Space-use and demographic processes are critical to the persistence of populations across space and time. Despite their importance, estimates of these processes are often derived from a limited number of populations spanning broad habitat or environmental gradients. With increasing appreciation of the role fine-scale environmental variation in microgeographic adaptation, there is a need and value to assessing within-site variation in space-use and demographic patterns. In this study, we analyze 3 years of spatial capture-recapture data on the Eastern Red-backed Salamander collected from a mixed-use deciduous forest site in central Ohio, USA. Study plots were situated in both a mature forest stand and successional forest stand separated by <100-m distance. Our results showed that salamander density was reduced on successional plots, which corresponded with greater distance between nearest neighbors, less overlap in core use areas, greater space-use, and greater shifts in activity centers when compared to salamanders occupying the mature habitat. By contrast, individual growth rates of salamanders occupying the successional forest were significantly greater than salamanders in the mature forest. These estimates result in successional plot salamanders reaching maturity more than 1 year earlier than salamanders on the mature forest plots and increasing their estimated lifetime fecundity by as much as 43%. The patterns we observed in space-use and individual growth are likely the result of density-dependent processes, potentially reflecting differences in resource availability or quality. Our study highlights how fine-scale, within-site variation can shape population demographics. As research into the demographic and population consequences of climate change and habitat loss and alteration continue, future research should take care to acknowledge the role that fine-scale variation may play, especially for abiotically sensitive organisms with limited vagility.

3.
Anal Bioanal Chem ; 413(10): 2747-2754, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33025035

RESUMEN

The ability to spatially resolve the chemical distribution of compounds on a surface is important in many applications ranging from biological to material science. To this extent, we have recently introduced a hybrid atomic force microscopy (AFM)-mass spectrometry (MS) system for direct thermal desorption and pyrolysis of material with nanoscale chemical resolution. However, spatially resolved direct surface heating using local thermal desorption becomes challenging on material surfaces with low melting points, because the material will undergo a melting phase transition due to heat dissipation prior to onset of thermal desorption. Therefore, we developed an approach using mechanical sampling and collection of surface materials on an AFM cantilever probe tip for real-time analysis directly from the AFM tip. This approach allows for material to be concentrated directly onto the probe for subsequent MS analysis. We evaluate the performance metrics of the technique and demonstrate localized MS sampling from a candelilla wax matrix containing UV stabilizers avobenzone and oxinoxate from areas down to 250 nm × 250 nm. Overall, this approach removes heat dissipation into the bulk material allowing for a faster desorption and concentration of the gas phase analyte from a single heating pulse enabling higher signal levels from a given amount of material in a single sampling spot.Graphical abstract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...