Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Laterality ; 29(3): 246-282, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669348

RESUMEN

Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.


Asunto(s)
Lateralidad Funcional , Animales , Perros , Gatos , Lateralidad Funcional/fisiología , Ratas , Conducta Animal/fisiología , Reproducibilidad de los Resultados
2.
Exp Brain Res ; 239(10): 2999-3005, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34331083

RESUMEN

Recent animal and human studies connected the Morc family CW-type zinc finger 1 (Morc1) gene with early life stress and depression. Moreover, the Morc superfamily is related to epigenetic regulation in diverse nuclear processes. So far, the Morc1 gene was mainly studied in spermatogenesis, whereas its distribution and function in the brain are still unknown. In a first attempt to characterize Morc1 in the brain, we performed a Western Blot analysis as well as a real-time PCR analysis during different stages of development. Additionally, we detected Morc1 mRNA using real-time PCR in different mood-regulating brain areas in adult rats. We found that MORC1 protein as well as Morc1 mRNA is already expressed in the brain at embryonic day 14 and is stably expressed until adulthood. Furthermore, Morc1 mRNA is present in many important brain areas of mood regulation like the medial prefrontal cortex, the nucleus accumbens, the hippocampus, the hypothalamus, and the amygdala. The ample distribution in the brain and its molecular structure as a zinc finger protein indicate that Morc1 might act as a transcription factor. This function and its expression in mood-regulating areas already in the early brain development turn Morc1 into a possible candidate gene for mediating early life stress and depression.


Asunto(s)
Epigénesis Genética , Factores de Transcripción , Animales , Encéfalo , Hipocampo , Masculino , ARN Mensajero , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA