Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Anat ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419169

RESUMEN

Congenital heart disease (CHD) is the most common congenital anomaly, with an overall incidence of approximately 1% in the United Kingdom. Exome sequencing in large CHD cohorts has been performed to provide insights into the genetic aetiology of CHD. This includes a study of 1891 probands by our group in collaboration with others, which identified three novel genes-CDK13, PRKD1, and CHD4, in patients with syndromic CHD. PRKD1 encodes a serine/threonine protein kinase, which is important in a variety of fundamental cellular functions. Individuals with a heterozygous mutation in PRKD1 may have facial dysmorphism, ectodermal dysplasia and may have CHDs such as pulmonary stenosis, atrioventricular septal defects, coarctation of the aorta and bicuspid aortic valve. To obtain a greater appreciation for the role that this essential protein kinase plays in cardiogenesis and CHD, we have analysed a Prkd1 transgenic mouse model (Prkd1em1 ) carrying deletion of exon 2, causing loss of function. High-resolution episcopic microscopy affords detailed morphological 3D analysis of the developing heart and provides evidence for an essential role of Prkd1 in both normal cardiac development and CHD. We show that homozygous deletion of Prkd1 is associated with complex forms of CHD such as atrioventricular septal defects, and bicuspid aortic and pulmonary valves, and is lethal. Even in heterozygotes, cardiac differences occur. However, given that 97% of Prkd1 heterozygous mice display normal heart development, it is likely that one normal allele is sufficient, with the defects seen most likely to represent sporadic events. Moreover, mRNA and protein expression levels were investigated by RT-qPCR and western immunoblotting, respectively. A significant reduction in Prkd1 mRNA levels was seen in homozygotes, but not heterozygotes, compared to WT littermates. While a trend towards lower PRKD1 protein expression was seen in the heterozygotes, the difference was only significant in the homozygotes. There was no compensation by the related Prkd2 and Prkd3 at transcript level, as evidenced by RT-qPCR. Overall, we demonstrate a vital role of Prkd1 in heart development and the aetiology of CHD.

2.
J Mater Chem B ; 11(47): 11290-11299, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38013459

RESUMEN

The abuse of antibiotics has led to serious environmental pollution and the emergence of drug-resistant bacteria surpassing the replacement rate of antibiotics. Herein, near-infrared fluorescent carbon dots (NIR-CDs) were developed to meet the requirements for oxytetracycline (OTC) detection in food and water samples (milk, honey, and lake water) with a detection limit of 0.112 µM. These NIR-CDs, possessing excellent water-solubility, deep tissue penetration ability, and tunable optical properties, exhibit maximum emission at 790 nm (NIR-I window). Unlike traditional CDs, this novel NIR-CDs nanoprobe provides a dual response in the presence of OTC (quenching and bathochromic shifting), without obvious interference from other existing biomolecules and metal ions. Additionally, these NIR-CDs exhibit excellent photostability and multi-resistance under UV irradiation, exceptional pH stability (pH 6-12), reliable long-time exposure, and durability in ionic (NaCl) environments. Moreover, NIR-CDs and NIR-CDs@OTC are nontoxic and were successfully utilized for cell-imaging applications in normal (NIH3T3) and cancer cells (HeLa).


Asunto(s)
Oxitetraciclina , Puntos Cuánticos , Animales , Ratones , Puntos Cuánticos/química , Carbono/química , Fluorescencia , Células 3T3 NIH , Antibacterianos/farmacología , Colorantes Fluorescentes/química , Agua
3.
ACS Appl Mater Interfaces ; 15(39): 45616-45625, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729491

RESUMEN

Carbon dots are emerging fluorescent nanomaterials with unique physical and chemical properties and a wide range of applications. Herein, we have designed and successfully synthesized thermally stable green emissive nitrogen-doped carbon dots (NCDs) with a photoluminescent quantum yield of 11.32% through facile solvent-free carbonization. NCDs demonstrated zero thermal quenching upon various temperatures modulating from 20 to 80 °C. The green emissive NCDs perform very stably even after heating them at 80 °C for 1 h. The thermal stability mechanism demonstrates that C═O and C═N functional groups control the particle aggregation and protect the fluorescent hub from photo-oxidation and thermal oxidation. Highly biocompatible CDs exhibit bright, stable, and multicolor emissions in T-ca cells under hot circumstances (25-45 °C). Additionally, NCDs offer long-term stability in the biosystem, as evidenced by the fact that the cell retains its brightness about 70% after prolonging the incubation time to 8 days. Furthermore, the fluorescent NCDs are utilized as in vivo imaging agents in the hot environment as they display bright and thermally stable imaging (27-45 °C) under 488 nm excitation. The results confirmed that the produced thermally stable NCDs could be used in biology and related medical fields that require hot environment imaging.

4.
Talanta ; 265: 124781, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348356

RESUMEN

Dopamine (DA) is a biomolecule that plays a critical part in the functioning of our brains by promoting motivation, maintaining focus, and altering mood. Excessive or low-level concentrations of DA in the human brain led to a dangerous neurological disorder. It is significantly important to trace the precise amount of DA to prevent such risky brain disease. Recently, heteroatoms-doped carbon dots (H-CDs) have attracted great attention for their capacity to detect biomolecules, metal ions, organic solvents, chemical dyes, etc. In this review, we have provided a comprehensive summary of the emerging trends in the heteroatom functional dopamine-doped carbon dots (DA-CDs), which are based on DA used as starting substances or functionalizing agents. Our analysis encompasses a detailed exploration of the synthetic methods, physical and chemical properties of carbon dots derived from dopamine, as well as their diverse range of applications. Additionally, we have also discussed the application of H-CDs in the dopmine detection by using various fluorescent, colorimetric, and electrochemical techniques.


Asunto(s)
Dopamina , Puntos Cuánticos , Humanos , Dopamina/análisis , Carbono/química , Colorantes Fluorescentes/química , Puntos Cuánticos/química
5.
Int J Phytoremediation ; 25(12): 1656-1668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855239

RESUMEN

Microbes have shown potential for the bioremediation of tannery waste polluted soil. During our previous study, it was observed that heavy metal resistant Burkholderia cepacia CS8 augmented growth and phytoremediation capability of an ornamental plant. Objective of the present research work was to evaluate the capability of B. cepacia CS8 assisted Calendula officinalis plants for the phytoremediation of tannery solid waste (TSW) polluted soil. The TSW treatment significantly reduced growth attributes and photosynthetic pigments in C. officinalis. However, supplementation of B. cepacia CS8 which exhibited substantial tolerance to the TSW amended soil, augmented growth traits, carotenoid, proline, and antioxidant enzymes level in C. officinalis under toxic and nontoxic regimes. Inoculation of B. cepacia CS8 augmented plant growth (shoot length 13%, root length 11%), physiological attributes (chlorophyll a 14%, chlorophyll b 17%), antioxidant enzyme activities (peroxidase 24%, superoxide dismutase 31% and catalase 19%), improved proline 36%, phenol 32%, flavonoids 14% and declined malondialdehyde (MDA) content 15% and hydrogen peroxide (H2O2) level 12% in C. officinalis at TSW10 stress compared with relevant un-inoculated plants of TSW10 treatment. Moreover, B. cepacia CS8 application enhanced labile metals in soil and subsequent metal uptake, such as Cr 19%, Cd 22%, Ni 35%, Fe 18%, Cu 21%, Pb 34%, and Zn 30%, respectively in C. officinalis plants subjected to TSW10 stress than that of analogous un-inoculated treatment. Higher plant stress tolerance and improved phytoremediation potential through microbial inoculation will assist in the retrieval of agricultural land in addition to the renewal of native vegetation.


During the current study, it was observed that combination of Calendula officinalis and metal tolerant Burkholderia cepacia CS8 not only improved plant growth but also helped phyto-extraction of pollutants present in the tannery solid waste polluted soil. According to our information, research work describing the phytoremediation potential of native metal tolerant microbes and ornamental plants has not been reported in Pakistan.


Asunto(s)
Burkholderia cepacia , Calendula , Metales Pesados , Contaminantes del Suelo , Antioxidantes , Clorofila A , Biodegradación Ambiental , Residuos Sólidos , Peróxido de Hidrógeno , Suelo , Contaminantes del Suelo/análisis
6.
Anal Chim Acta ; 1245: 340847, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36737134

RESUMEN

Fluorescent carbon dots have been highly reported nanomaterials in recent times because of their excellent physio-chemical properties and various field of applications. Herein, a one-step hydrothermal approach was used to synthesize high biocompatible nitrogen and sulfur co-doped carbon dots, and examined their chemical sensing (Hg2+) and biological imaging properties. The N,S-CDs exhibited blue light, demonstrating a high quantum yield of up to 44.5% and excitation-independent fluorescent characteristics. Cytotoxicity was observed by CCK-8 assay using T-ca cells as a target source. Cell viability was recorded over 80% even after 7 days of treatment with a concentration up to 400 µg/mL, indicating low-toxicity of N,S-CDs. Notably, the bright blue fluorescence of N,S-CDs was quenched by introducing toxic Hg2+ ions into the solution. The detection limit was calculated to be about ∼3.5 nM, which is quite impressive compared to previous reports. Because of their low-toxicity, nano-size, and environment friendly properties, N,S-CDs could be excellent fluorescent agents for bio-imaging applications. The biological stability of fluorescent N,S-CDs was tested over time, and the findings were significant even after 8 days of incubation with T-ca cells. Because of good biocompatibility and bright fluorescence, N,S-CDs were suitable for in vivo imaging.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono/toxicidad , Carbono/química , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Nitrógeno/química , Azufre/química , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Mercurio/toxicidad
7.
Curr Psychol ; 42(12): 10248-10259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34584392

RESUMEN

The COVID-19 crisis has drastically affected organizations worldwide, thereby influencing the employees' psychological wellbeing. Since it is a new pandemic, research is sparse in the domain of employees' psychological wellbeing in relation to the phenomenon. Drawing on social support and job demand-resource perspectives, this research adds to the factors affecting employees' wellbeing due to the coronavirus outbreak. Specifically, this study is an investigation of co-workers' instrumental support in predicting employees' emotional exhaustion via employees' perceived uncertainties experienced due to the COVID-19 pandemic. Further, we tested for the contextual specificity of family support on uncertainties and its link with employees' emotional exhaustion. With data drawn from two universities (n = 275), the findings reveal a negative association between co-worker task support and an employee's emotional exhaustion, and an employee's perceived uncertainties mediate this relationship. Moreover, the moderating analysis exhibits that family support mitigates the negative effect of uncertainty perception on emotional exhaustion. Our study reveals that coworker and family support are extremely important during the COVID-19 pandemic. These findings are equally valuable for organizations and society to mitigate the detrimental effects of the COVID-19 pandemic on employees' wellbeing.

8.
Environ Sci Pollut Res Int ; 30(9): 22430-22457, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36287363

RESUMEN

Various empirical studies have examined the nexus between financial markets, but this study focused on the comovement among prominent markets. Our study examines the interrelationship among main financial markets, i.e., stock, oil, and commodity during the recent pandemic. The interconnections among the selected markets are investigated using a battery of wavelet coherence tools and the Granger causality test. From the wavelet coherence analysis, our findings indicate strong co-movements among the VIX, oil volatility, and commodity prices during pandemic and localized in all scales and over the sample period. The dependency strength among the considered economies is noted to increase in pandemic, which implies increased short- and long-term benefits for the investors. Moreover, Our result exhibits a feedback causality between OVIX and crude oil, VIX and S&P 500, and gasoline and VIX. Interestingly, a unidirectional causality exists between VIX and crude oil, S&P 500 and crude oil, Brent and crude oil, gasoline, crude oil, and VIX and OVIX. We advocate that the findings will be helpful for portfolio managers, investors, and officials around the world.


Asunto(s)
COVID-19 , Petróleo , Humanos , Gasolina , Pandemias , Suministros de Energía Eléctrica
9.
Int J Phytoremediation ; 24(4): 364-372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34282979

RESUMEN

During the current study, the effects of magnesium oxide nanoparticles (5 mmol/L) were observed on the growth and mineral nutrients of Daucus carota under lead (Pb) stress. The results demonstrated that Pb stress decreased the growth and photosynthetic rate of D. carota plants. Furthermore, Pb stressed plants showed decreased uptake of mineral nutrients including Zn, Na, Fe, K, Ca, Mg, K, and Cu. Similarly, Pb stressed plants showed enhanced electrolyte leakage (EL) and malondialdehyde (MDA) content. However, magnesium oxide nanoparticles detoxified ROS to mitigate Pb stress and improved the growth of plants. Magnesium oxide nanoparticles also escalated the activity of antioxidant enzymes including superoxide dismutase (SOD) and Catalase (CAT). A higher amount of Pb content was observed in the roots as compared to the shoot of plants. Lead toxicity reduced manganese accumulation in D. carota plants. The increased concentration of iron, manganese, copper, and zinc advocates stress the ameliorative role of Pb stress in plants. Novelty statementThe role of MgONPs in the alleviation of Pb-toxicity in Daucus carota has never been exploited. In addition, the potential of MgONPs to enhance nutritional content in D. carota via modulation in antioxidant system and polyamines have never been reported.


Asunto(s)
Daucus carota , Nanopartículas , Antioxidantes , Biodegradación Ambiental , Plomo/toxicidad , Óxido de Magnesio , Poliaminas , Superóxido Dismutasa
10.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-979232

RESUMEN

Aims@#Thermophilic proteases are important industrial enzymes because they can be used at high temperatures in various bioprocessing schemes. The bacterial population of the Cholistan desert was explored for thermophilic proteases and their industrial applications.@*Methodology and results@#Three bacterial isolates K1, K5 and K7 were found promising protease producers. These isolates were preliminary identified as Bacillus based on morphological characteristics and biochemical tests (positive for catalase, oxidase and citrate tests, and negative for indole and urease tests). The isolates K1, K5 and K7 were further identified as Priestia endophytica, Lysinibacillus cresolivorans and Bacillus subtilis, respectively by phylogenetic analysis. The isolates grew best at 50 °C and P. endophytica (K1), L. cresolivorans (K5) and B. subtilis (K7) produced larger zones of hydrolysis at 37 °C, 45 °C and 50 °C at pH 7, respectively. The optimum temperature where protease activity was maximum was 65 °C for P. endophytica and L. cresolivorans and 55 °C for B. subtilis, and the optimum pH was 9.@*Conclusion, significance and impact of study@#The proteases produced by these isolates were found active at high temperatures (45 °C to 85 °C) and high pH (9-12), which make them industrially important thermoalkaliphilic proteases. These proteases successfully de-haired cow’s skin and de-stained blood from cotton cloth pieces, which are rarely tested applications of these proteases.


Asunto(s)
Desierto , Péptido Hidrolasas
11.
Front Plant Sci ; 12: 722498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512701

RESUMEN

Current research was conducted to explore the effects of liquiritoside on the growth and physiochemical features of Chinese flowering cabbage (Brassica rapa subsp. parachinensis) under lead (Pb) stress. Lead stressed B. rapa plants exhibited decreased growth parameters, chlorophyll, and carotenoid contents. Moreover, Pb toxicity escalated the synthesis of malondialdehyde (MDA), hydrogen peroxide (H2O2), flavonoids, phenolics, and proline in treated plants. Nevertheless, foliar application of liquiritoside mitigated Pb toxicity by decreasing oxidative stress by reducing cysteine, H2O2, and MDA contents in applied plants. Liquiritoside significantly increased plant height, shoot fresh weight and dry weight, number of leaves, and marketable value of Chinese flowering cabbage plants exposed to Pb toxicity. This biotic elicitor also enhanced the proline, glutathione, total phenolics, and flavonoid contents in Chinese flowering cabbage plants exposed to Pb stress compared with the control. Additionally, total glucosinolate content, phytochelatins (PCs), and non-protein thiols were effectively increased in plants grown under Pb regimes compared with the control plants. Overall, foliar application of liquiritoside can markedly alleviate Pb stress by restricting Pb translocation in Chinese flowering cabbage.

12.
Plant Physiol Biochem ; 166: 874-886, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34237605

RESUMEN

Currently, producing safe agricultural commodities from the crop plants cultivated in the soil with increasing heavy metal toxicity is a gigantic challenge in front of researchers. Heavy metals are absorbed and translocated in the crop plants and then transferred to every downstream consumer of the food chain, including humans, causing serious disorders and ailments. The current research presents a combined schematic application of iron nanoparticles (Fe-NPs) and/or silicon (Si), to mitigate cadmium (Cd) stress in Lima bean (Phaseolus lunatus). It was noted that Cd-induced toxicity curtailed growth, antioxidative machinery, glyoxalase system and nutrient uptake of the plants. Furthermore, the physiochemical features of Cd stressed plants, including carotenoids, chlorophyll, photochemical quenching, photosynthetic efficiency, and leaf relative water contents, were improved by the combined application of Si and Fe-NPs. Moreover, higher levels of malondialdehyde (MDA), methylglyoxal (MG), hydrogen peroxide (H2O2), and electrolyte leakage (EL) were observed in Cd stressed plants. Nevertheless, the independent treatment or combined application of Si and/or Fe-NPs attenuated the adversative effects of Cd on the aforementioned growth attributes. Furthermore, Si and Fe-NPs defended plants from the injurious effects of MG by improving the activities of the glyoxalase enzyme. The Si and Fe-NPs reduced Cd contents but at the same time improved uptake and accumulation of nutrients in treated plants exposed to the Cd regime. This study highlights that Si and Fe-NPs have enormous potential to mitigate Cd-induced phytotoxicity by declining Cd uptake and improving the growth attributes of plants if applied in combination.


Asunto(s)
Nanopartículas , Phaseolus , Contaminantes del Suelo , Antioxidantes , Cadmio/análisis , Cadmio/toxicidad , Peróxido de Hidrógeno , Hierro , Silicio/farmacología , Contaminantes del Suelo/análisis
13.
Front Pharmacol ; 12: 658670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140890

RESUMEN

The roots of Glycyrrhiza spp. have been utilized in Traditional Chinese medicine (TCM) for thousands of years. Non-traditional (aerial) parts constitute a large portion of the biomass of Glycyrrhiza plants and are mostly discarded after harvesting the roots and rhizomes. Through comparative phytochemical and anti-inflammatory activity analyses, this study explored the potential benefits of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. as medicinal materials. First, a combined approach based on GC/MS and UHPLC-ESI-QTof MS analysis was adopted for the identification and quantitative examination of medicinally important compounds from G. uralensis. Additionally, a bioassay-guided fractioning of ethanolic extracts of G. uralensis leaf material was performed and its anti-inflammatory activity was tested. The aerial portion of G. uralensis was rich in medicinally important compounds. Two compounds (henicosane-1 and decahydroisoquinoline-2) were found to exert a significant anti-inflammatory effect, inhibiting the release of pro-inflammatory mediators (NO and PGE2) and cytokines (IL-1ß, IL6, and TNF-α), without exerting cytotoxic effects. Moreover, both compounds down-regulated iNOS and COX-2 mRNA expression. These results suggest that non-traditional parts of G. uralensis are suitable sources of bioactive metabolites that can be explored for medicinal purposes.

14.
Ecotoxicol Environ Saf ; 213: 112047, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33601172

RESUMEN

In this study, we have evaluated the role of karrikin (KAR1) against the absorption and translocation of a persistent organic pollutant (POP), 2,4,4'-Tribromodiphenyl ether (BDE-28) in plants, in the presence of two other stressors, cadmium (Cd) and high temperature. Furthermore, it correlates the physiological damages of Brassica alboglabra with the three stresssors separately. The results revealed that the post-germination application of KAR1 successfully augmented the growth (200%) and pertinent physiochemical parameters of B. alboglabra. KAR1 hindered air absorption of BDE-28 in plant tissues, and reduced its translocation coefficient (TF). Moreover, BDE-28 was the most negatively correlated (-0.9) stressor with chlorophyll contents, while the maximum mitigation by KAR1 was also achieved agaist BDE-28. The effect of temperature was more severe on soluble sugars (0.51), antioxidative machinery (-0.43), and osmoregulators (0.24). Cd exhibited a stronger inverse interrelation with the enzymatic antioxidant cascade. Application of KAR1 mitigated the deleterious effects of Cd and temperature stress on plant physiological parameters along with reduced aero-concentration factor, TF, and metal tolerance index. The phytohormone reduced lipid peroxidation by decreasing synthesis of ROS and persuading its breakdown. The stability of cellular membranes was perhaps due to the commotion of KAR1 as a growth-promoting phytohormone. In the same way, KAR1 supplementation augmented the membrane stability index, antioxidant defense factors, and removal efficiency of the pollutants. Consequently, the exogenously applied KAR1 can efficiently alleviate Cd stress, heat stress, and POP toxicity.


Asunto(s)
Brassica/fisiología , Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Antioxidantes/metabolismo , Brassica/metabolismo , Cadmio/metabolismo , Clorofila/metabolismo , Furanos , Germinación/efectos de los fármacos , Peroxidación de Lípido , Reguladores del Crecimiento de las Plantas/metabolismo , Bifenilos Polibrominados , Piranos
15.
Nanoscale ; 13(7): 4301-4307, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595575

RESUMEN

High stability and water solubility of fluorescent nanomaterials are considered key factors to evaluate their feasibility for fundamental applications. Herein, water-soluble and thermally stable, green-emitting carbon nanodots (CNDs) have been synthesized via a facile hydrothermal method with an average size of 1.9 nm. CNDs showed green emission centered at 544 nm with the photo-luminescence quantum yield (PLQY) of up to 10.1% under the excitation of 400 nm. The obtained CNDs demonstrated high resistance towards photo-bleaching and an ionic (KCl) environment. Moreover, the aqueous solution of CNDs exhibited excellent stability under harsh thermal conditions from 10 °C to 80 °C. The as-prepared CNDs showed stable performance at high temperatures, even after keeping them at 80 °C for 30 min. Furthermore, the green emissive CNDs were incubated in T-ca cancer cells for bio-imaging applications. The results indicated that CNDs can served as an effective thermally-stable bio-imaging agent in T-ca cells at the physiological temperature range of 25 °C-45 °C. Green emission and excellent thermal stability make these CNDs promising fluorescent materials for potential applications in the medical field, which requires long-wavelength fluorescence and high-temperature imaging.


Asunto(s)
Carbono , Nanoestructuras , Colorantes , Microscopía Fluorescente , Agua
16.
ACS Appl Bio Mater ; 4(7): 5786-5796, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35006753

RESUMEN

Fluorescent sensing of temperature in nanoscale regions has many advantages and applications in the biological field. Herein, blue emitting carbon dots (CDs) are designed and successfully developed using a one step hydrothermal method. As synthesized CDs exhibit temperature dependent photoluminescent (PL) intensity and PL decay lifetime over the physiological temperature ranging from room temperature (RT) to 70 °C. The PL intensity and PL decay lifetime of the obtained CDs correlate linearly to temperature (RT-70 °C) with correlation coefficient of 0.997 and 0.996, respectively. Additionally, dual mode thermal sensing (PL intensity/lifetime) make these CDs a promising optical nanothermometer over alternative semiconductors quantum dots and CD-based quantum dots. Moreover, the resultant aqueous CDs demonstrate excitation-independent blue emission, and the PL quantum yield (QY) is reached at 44.5%. The obtained CDs illustrate stable performance to high ionic environments and photobleaching even after keeping them for 2 h under continues UV irradiation. Furthermore, blue emitting CDs have low cytotoxicity for T-ca. cells and illuminate deep blue fluorescence under the excitation of 406 nm. As a result, high thermal sensitivity of these fluorescent CDs has potential to detect temperature in living cells in the range of 25-40 °C.


Asunto(s)
Carbono , Puntos Cuánticos , Fluorescencia , Colorantes Fluorescentes , Puntos Cuánticos/toxicidad , Temperatura
17.
Plant Physiol Biochem ; 158: 1-12, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33278679

RESUMEN

Cadmium (Cd), prevailing in most of the agricultural lands of the world contaminates food chain, thereby causing several health implications. It has become the main heavy metal contaminant in most of the agricultural lands of Pakistan due to the widespread use of phosphate fertilizers besides application of irrigation water contaminated with industrial and mining effluents. Plant growth promoting bacteria (PGPB) are capable to enhance growth and metal stress tolerance in supplemented plants. Zinc oxide nanoparticles (ZnO-NPs) are capable to alleviate various abiotic stresses when applied to plants. During current research, the efficacy of single and combined application of Bacillus fortis IAGS 223 and ZnO-NPs was evaluated for alleviation of Cd (75 mg kg-1) induced phytotoxicity in Cucumis melo plants. For this purpose, C. melo plants, subjected to Cd stress were treated with B. fortis IAGS 223 and ZnO-NPs (20 mg kg-1), either alone or in combination. The growth relevant characteristics including photosynthetic pigments, hydrogen peroxide (H2O2), malondialdehyde (MDA), and activities of antioxidative enzymes as well as Zn and Cd contents in treated plants were examined. The individual application of ZnO-NPs and B. fortis IAGS 223 slightly enhanced all the above-mentioned growth characteristics in plants under Cd stress. However, the combined application of ZnO-NPs and B. fortis IAGS-223 considerably modulated the activity of antioxidant enzymes besides upgradation of the biochemicals and growth parameters of Cd stressed plants. The decreased amount of stress markers such as H2O2, and MDA in addition with reduction of Cd contents was observed in shoots of ZnO-NPs and B. fortis IAGS-223 applied plants. B. fortis IAGS-223 inoculated plants supplemented with ZnO-NPs, exhibited reduced amount of Cd as well as protein bound thiols and non-protein bound thiols under Cd stress. Subsequently, the reduced Cd uptake improved growth of ZnO-NPs and B. fortis IAGS-223 applied plants. Henceforth, field trials may be performed to formulate appropriate combination of ZnO-NPs and B. fortis IAGS-223 to acquire sustainable crop production under Cd stress.


Asunto(s)
Bacillus/fisiología , Cadmio/toxicidad , Cucumis melo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Óxido de Zinc/farmacología , Cucumis melo/microbiología , Peróxido de Hidrógeno , Nanopartículas del Metal
18.
Chemosphere ; 263: 127999, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297036

RESUMEN

Hydrogen sulfide (H2S) is helpful for maintaining plant growth under abiotic stresses. The current study elucidated the physiological and biochemical strategies by which sodium hydrosulfide (NaHS), a donor of H2S, alleviated cadmium (Cd) toxicity in Brassica rapa. B. rapa plants growing under 50 mgkg-1 Cd stress showed reduced leaf relative water contents (LRWC), photosynthetic pigments, total soluble proteins, minerals uptake, antioxidants and growth. Furthermore, enhanced accumulation of Cd contents caused augmentation in levels of electrolyte leakage (EL) and methylglyoxal (MG). Nevertheless, improved physiochemical parameters in B. rapa seedlings obtained from seeds primed with 1.5 mM NaHS resulted better phenotype, growth and biomass production in Cd stressed plants. Protective stimulus of H2S regulated minerals and Cd homeostasis besides increased activity of antioxidants which decreased level of reactive oxygen species (ROS), EL, malondialdehyde (MDA) and MG in Cd regimes. Furthermore, H2S treated seedlings exhibited reduction in Cd content and revealed an active participation in the indole acetic acid (IAA) mediated pathway during stress. The findings of current study propose that H2S improved stress tolerance and mitigated Cd stress in B. rapa by modulating growth biomarkers and antioxidative system.


Asunto(s)
Brassica rapa , Sulfuro de Hidrógeno , Antioxidantes , Cadmio/toxicidad , Malondialdehído , Plantones
19.
Plant Physiol Biochem ; 158: 486-496, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33298367

RESUMEN

The continuous deterioration of arable lands by metal pollution compels finding suitable strategies to increase plant tolerance under contaminated regimes. Current study was designed to examine the synergistic role of Bacillus subtilis FBL-10 and silicon (Si) with respect to mitigation of lead (Pb) induced phytotoxicity in Solanum melongena L. Lead stress (75 mg kg-1) reduced chlorophyll (Chl) content, photosynthetic rate and gas exchange characteristics of S. melongena plants. The Si and B. subtilis FBL-10 individually upgraded all the above-mentioned growth attributes. However, co-application of Si (50 mg kg-1) and B. subtilis FBL-10 significantly improved biochemical and growth attributes of Pb challenged plants. The abridged levels of oxidative markers including hydrogen peroxide (H2O2), and malondialdehyde (MDA) besides reduced Pb accumulation in foliage tissues, were recorded in Si and microbe assisted plants. Furthermore, plants inoculated with B. subtilis FBL-10 alone or in combination with Si showed increment in total soluble proteins, photosynthetic rate and gas exchange attributes. The inoculated plants treated with Si exhibited higher level of auxins and improved activity of antioxidant enzymes under Pb stress. Present research elucidates interactive role of B. subtilis FBL-10 and Si in reduction of Pb toxicity in S. melongena plants. Alone application of Si or B. subtilis FBL-10 was less effective for attenuation of Pb stress; however, synergism between both phyto-protectants demonstrated fabulous ability for Pb stress assuagement. Consequently, executions of field studies become indispensable to comprehend the efficacy of Si applied alone or in combination with plant growth promoting bacteria (PGPB) like B. subtilis FBL-10. From current research, it is concluded that the interaction of Si and PGPB seems an auspicious technique and eco-friendly approach to enhance metal tolerance in crop plants.


Asunto(s)
Bacillus subtilis/fisiología , Plomo/toxicidad , Silicio , Solanum melongena/fisiología , Antioxidantes/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Silicio/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/microbiología
20.
Chemosphere ; 270: 128633, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33077186

RESUMEN

Hydrocarbon stress has become one of the most restrictive factors for crop choice and productivity in most parts of the world. Dopamine (DA) has positively influenced the metabolic, physiological and biochemical activities besides the growth of plants under numerous abiotic stress conditions. The current study was performed to analyze the potential of DA to alleviate hydrocarbon stress and improve growth of Brassica oleracea plants. Hydrocarbon stress in plants was induced by growing in 5% and 10% crude oil contaminated soil. Crude oil stressed plants exhibited reduced growth besides decreased level of photosynthetic pigments and gas exchange attributes. Moreover, oil stressed plants showed elevated level of hydrogen peroxide (H2O2), electrolyte leakage (EL), malondialdehyde (MDA) and superoxide radical (O2-). However, exogenous application of 50, 100 and 200 µmol L-1 DA improved photosynthesis, shoot and root dry weight of B. oleracea seedlings growing in hydrocarbon amended soil. Additionally, DA100 treatments improved non-enzymatic and enzymatic antioxidants of treated seedlings. Our results demonstrate that increased gas exchange attributes, modulation of osmoregulators and improved activity of the antioxidative enzymes alleviated hydrocarbon stress in DA supplemented B. oleracea plants. Consequently, the first time observed ameliorative role of DA in hydrocarbon stress opens a new arena for application of this dynamic biomolecule for sustainable crop production.


Asunto(s)
Brassica , Contaminantes del Suelo , Antioxidantes , Dopamina , Hidrocarburos , Peróxido de Hidrógeno , Estrés Oxidativo , Fotosíntesis , Plantones , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...