Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 12(1): 2269634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876835

RESUMEN

Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Hepáticas , Humanos , Animales , Ratones , Interleucinas , Interleucina-22
2.
Nat Immunol ; 24(9): 1473-1486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580603

RESUMEN

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Asunto(s)
Membrana Mucosa , Salmonella typhimurium , Humanos , Ratones , Animales , Linfocitos T , Inmunidad Mucosa
3.
Front Oncol ; 13: 1170502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324022

RESUMEN

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

4.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630911

RESUMEN

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Asunto(s)
Interleucinas , Neoplasias Hepáticas , Células T Asesinas Naturales , Animales , Ratones , Células Endoteliales/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Ratones Endogámicos C57BL , Células T Asesinas Naturales/metabolismo , Neoplasias Colorrectales/metabolismo , Interleucina-22
5.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625344

RESUMEN

A role of CD4+ T cells during the progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) has been suggested, but which polarization state of these cells characterizes this progression and the development of fibrosis remain unclear. In addition, a gut-liver axis has been suggested to play a role in NASH, but the role of CD4+ T cells in this axis has just begun to be investigated. Combining single-cell RNA sequencing and multiple-parameter flow cytometry, we provide the first cell atlas to our knowledge focused on liver-infiltrating CD4+ T cells in patients with NAFLD and NASH, showing that NASH is characterized by a population of multicytokine-producing CD4+ T cells. Among these cells, only those with a Th17 polarization state were enriched in patients with advanced fibrosis. In parallel, we observed that Bacteroides appeared to be enriched in the intestine of NASH patients and to correlate with the frequency of multicytokine-producing CD4+ T cells. In short, we deliver a CD4+ T cell atlas of NAFLD and NASH, providing the rationale to target CD4+ T cells with a Th17 polarization state to block fibrosis development. Finally, our data offer an early indication to test whether multicytokine-producing CD4+ T cells are part of the gut-liver axis characterizing NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Linfocitos T CD4-Positivos , Fibrosis
7.
Nat Commun ; 11(1): 3334, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620760

RESUMEN

TH17 cells exemplify environmental immune adaptation: they can acquire both a pathogenic and an anti-inflammatory fate. However, it is not known whether the anti-inflammatory fate is merely a vestigial trait, or whether it serves to preserve the integrity of the host tissues. Here we show that the capacity of TH17 cells to acquire an anti-inflammatory fate is necessary to sustain immunological tolerance, yet it impairs immune protection against S. aureus. Additionally, we find that TGF-ß signalling via Smad3/Smad4 is sufficient for the expression of the anti-inflammatory cytokine, IL-10, in TH17 cells. Our data thus indicate a key function of TH17 cell plasticity in maintaining immune homeostasis, and dissect the molecular mechanisms explaining the functional flexibility of TH17 cells with regard to environmental changes.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Interleucina-10/inmunología , Intestinos/inmunología , Células Th17/inmunología , Animales , Plasticidad de la Célula/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Células HEK293 , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo
8.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32585307

RESUMEN

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Linfotoxina-alfa/metabolismo , Receptores de Interleucina/metabolismo , Anciano , Animales , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , ARN Mensajero/metabolismo , Receptores de Interleucina/genética , Tasa de Supervivencia
9.
Nat Commun ; 11(1): 2608, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451418

RESUMEN

IL-22 has dual functions during tumorigenesis. Short term IL-22 production protects against genotoxic stress, whereas uncontrolled IL-22 activity promotes tumor growth; therefore, tight regulation of IL-22 is essential. TGF-ß1 promotes the differentiation of Th17 cells, which are known to be a major source of IL-22, but the effect of TGF-ß signaling on the production of IL-22 in CD4+ T cells is controversial. Here we show an increased presence of IL-17+IL-22+ cells and TGF-ß1 in colorectal cancer compared to normal adjacent tissue, whereas the frequency of IL-22 single producing cells is not changed. Accordingly, TGF-ß signaling in CD4+ T cells (specifically Th17 cells) promotes the emergence of IL-22-producing Th17 cells and thereby tumorigenesis in mice. IL-22 single producing T cells, however, are not dependent on TGF-ß signaling. We show that TGF-ß, via AhR induction, and PI3K signaling promotes IL-22 production in Th17 cells.


Asunto(s)
Colitis/complicaciones , Neoplasias del Colon/etiología , Interleucinas/biosíntesis , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/inmunología , Diferenciación Celular , Colitis/inmunología , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/inmunología , Células Th17/patología , Factor de Crecimiento Transformador beta1/metabolismo , Interleucina-22
10.
PLoS One ; 13(7): e0201170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30028872

RESUMEN

Metabolism is a critical basis for immune cell functionality. It was recently shown that NK cell subsets from peripheral blood modulate their expression of nutrient receptors following cytokine stimulation, demonstrating that NK cells can adjust to changes in metabolic requirements. As nutrient availability in blood and tissues can significantly differ, we examined NK cells isolated from paired blood-liver and blood-spleen samples and compared expression of the nutrient transporters Glut1, CD98 and CD71. CD56bright tissue-resident (CXCR6+) NK cells derived from livers and spleens expressed lower levels of Glut1 but higher levels of the amino acid transporter CD98 following stimulation than CD56bright NK cells from peripheral blood. In line with that, CD56dim NK cells, which constitute the main NK cell population in the peripheral blood, expressed higher levels of Glut1 and lower levels of CD98 and CD71 compared to liver CD56bright NK cells. Our results show that NK cells from peripheral blood differ from liver- and spleen-resident NK cells in the expression profile of nutrient transporters, consistent with a cell-adaptation to the different nutritional environment in these compartments.


Asunto(s)
Antígenos CD/metabolismo , Proteína-1 Reguladora de Fusión/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Células Asesinas Naturales/metabolismo , Receptores de Transferrina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Sangre/metabolismo , Células Cultivadas , Femenino , Humanos , Hígado/metabolismo , Hígado/cirugía , Trasplante de Hígado , Masculino , Persona de Mediana Edad , Bazo/metabolismo , Bazo/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...