Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256720

RESUMEN

Rapid urban expansion and a booming population are placing immense pressure on our agricultural systems, leading to detrimental impacts on soil fertility and overall health. Due to the extensive use of agrochemicals in agriculture, the necessity to meet the expanding demand for food has also resulted in unsustainable farming practices. Around the world, biochar, a multipurpose carbonaceous material, is being used to concurrently solve issues with enhancing soil fertility, plant growth, and development under both normal and stressful circumstances. It improves water retention, fosters nutrient absorption, and promotes microbial activity, creating a fertile environment that supports sustainable and resilient agriculture. Additionally, biochar acts as a carbon sink, contributing to long-term carbon sequestration and mitigating climate change impacts. The major benefit of biochar is that it helps the adsorption process with its highly porous structures and different functional groups. Understanding the elements involved in biochar formation that determine its characteristics and adsorptive capacity is necessary to assure the viability of biochar in terms of plant productivity and soil health, particularly biological activity in soil. This paper focuses on the development, composition, and effects of biochar on soil fertility and health, and crop productivity.

2.
Front Plant Sci ; 13: 914653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837462

RESUMEN

An ample quantity of water and sufficient nutrients are required for economical rice production to meet the challenges of ever-increasing food demand. Currently, slow-release nitrogenous fertilizers for efficient inputs utilization and maximum economic yield of field crops are in the limelight for researchers and farmers. In this study, we evaluated the comparative efficacy of conventional urea and coated urea (zinc and neem) on rice grown under aerobic and anaerobic regimes in greenhouse conditions. For the aerobic regime, field capacity was maintained at 80-100% to keep the soil aerated. On the other hand, for the anaerobic regime, pots were covered with a polythene sheet throughout the experimentation to create flooded conditions. All forms of urea, conventional and coated (zinc and neem), improved plant growth, gas exchange, yield, yield contributing parameters, and quality characteristics of rice crop. However, better performance in all attributes was found in the case of zinc-coated urea. Gas exchange attributes (photosynthetic rate, 30%, and stomatal conductance 24%), yield parameters like plant height (29%), tillers per plant (38%), spikelets per spike (31%), grains per panicle (42%), total biomass (53%), and grain yield (45%) were recorded to be maximum in rice plants treated with zinc-coated urea. The highest grain and straw nitrogen contents, grain protein contents, and grain water absorption ratio were also found in plants with zinc-coated urea applications. In irrigation practices, the anaerobic regime was found to be more responsive compared to the aerobic regime regarding rice growth, productivity, and quality traits. Thus, to enhance the productivity and quality of rice grown in anaerobic conditions, zinc-coated urea is best suited as it is more responsive when compared to other forms of urea.

3.
PLoS One ; 17(6): e0268907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696364

RESUMEN

Cotton (Gossypium hirsutum L.) is one of the most important cash crops primarily grown for fiber. It is a perennial crop with indeterminate growth pattern. Nitrogen (N) is extremely important for vegetative growth as balanced N-nutrition improves photosynthesis, resulting in better vegetative growth. Excessive N-supply results in more vegetative growth, which increases the incidence of insect pest and diseases' infestation, pollute surface and ground water, delays maturity and produces low crop yield with poor quality. The use of plant growth regulators (PGRs) is an emerging option to control excessive vegetative growth. The PGRs help in improving plant architecture, boll retention, boll opening, yield and quality by altering growth and physiological processes such as photosynthesis, assimilate partitioning and nutrients dynamic inside the plant body. Mepiquat chloride (1,1-dimethylpiperidinum chloride) is globally used PGR for canopy development and control of excessive vegetative growth in cotton. This study investigated the effect of mepiquat chloride (MC) and N application on yield and yield components of transgenic cotton variety 'BT-FSH-326'. Two N rates (0, 198 kg ha-1) and five MC rates (0, 30,60, 90 and 120 g ha-1) were included in the study. Results revealed that MC and N application improved boll weight, number of bolls per plant, and seed cotton and lint yields. The highest seed cotton and lint yields (3595 kg ha-1 and 1701 kg ha-1, respectively) were observed under foliar application of 198 kg ha-1 N and 120 g ha-1 MC. Fiber length, fiber strength, micronaire and uniformity were significantly improved with foliar application of MC and N. In conclusion, foliar application of MC and N could be helpful in improving yield and fiber quality of cotton.


Asunto(s)
Gossypium , Nitrógeno , Fibra de Algodón , Gossypium/genética , Piperidinas , Reguladores del Crecimiento de las Plantas
4.
PLoS One ; 17(2): e0263323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143535

RESUMEN

Chickpea (Cicer arietinum L.) is of prime importance because of vital source of protein as major food legume. Globally, it is cultivated on large area to meet dietary requirements of humans. Climatic extremes (erratic rainfall, extreme high and low temperature) are key restrains for its production. Optimum sowing time is considered as an important factor to address climatic variations and to attain maximum yield. Foliar application of potassium (K) has also been reported to increase resistance against abiotic stresses. Similarly, exogenous application of plant based growth substances (bio-stimulants) like moringa leaf extract (MLE) are extensively used to enhance productivity of field crops. Therefore, current study was planned to evaluate the impact of foliar applied K and MLE on growth, physiology and productivity of kabuli chickpea grown under varying sowing dates. There were two sowing dates (normal sown; November 15 and late sown; December 15, 2020). Experiment was comprised of treatments i.e. control, water spray, foliar application of K at 1%, foliar application of MLE at 3% and combined application of K and MLE. Foliar applied K and MLE significantly improved physiological, biochemical and yield attributes of kabuli chickpea cultivated under normal and late sown conditions. Increase in growth and yield attributes like plant height, number of nodules per plant, nodules dry weight, branches and pods per plant, 100- grain weight, biological and grain yield were recorded in case of combined foliar application of K and MLE in normal and late sown chickpea. Maximum improvement in gas exchange attributes (stomatal conductance and transpiration rate), chlorophyll contents, antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) and osmolytes (proline) were recorded with combined application of K and MLE in both sowing dates. Thus, combined applied K and MLE can be used to enhance productivity of kabuli chickpea.


Asunto(s)
Moringa
5.
PLoS One ; 16(10): e0256984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34618822

RESUMEN

Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification.


Asunto(s)
Silicio/metabolismo , Triticum/fisiología , Zinc/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Sequías , Silicio/administración & dosificación , Estrés Fisiológico , Agua/metabolismo , Zinc/administración & dosificación
6.
PLoS One ; 16(6): e0252393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111142

RESUMEN

Peanut (Arachis hypogea L.) is an important nut crop extensively grown in rainfed regions of Pakistan. The crop requires low inputs; thus, could grow successfully under diverse environmental conditions. Due to pegging ability, peanut grows aggressively in sandy and sandy-loam soils. However, it has not introduced to Thal region of southern Punjab, Pakistan. A two-year field experiment was conducted to optimize sowing dates for two peanut genotypes ('BARI-2016' and 'NO-334') in Thal region (Layyah). Similarly, a yield trial was conducted at Chakwal where both genotypes are extensively grown. Five sowing dates (10th April, 1st May, 20th May, 10th June and 30th June) were included in the study. The highest seed yield was obtained with early sown crop (10th April) during both years. Pod formation reduced with increasing atmospheric temperature and no pods were formed on the plants sown on 30th June. Decreased pod formation seemed a major reason for low yield in late-sown crop. The highest yield was observed for the crop sown on 10th April, which was decreased by 40% for the crop sown on 1st May. Genotype 'BARI-2016' performed better for seed yield at both locations compared with 'NO-334'. The results suggested that genotype 'BARI-2016' is more adaptive to arid and semi-arid condition under rainfed or irrigated conditions. Sowing peanut at optimum time would increase seed yield in arid and semi-arid regions. Nonetheless, 'BARI-2016' can be grown under rainfed and irrigated conditions successfully.


Asunto(s)
Agricultura/métodos , Arachis/crecimiento & desarrollo , Arachis/genética , Genotipo , Sequías , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...