Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746331

RESUMEN

Cancer is an evolutionary disease driven by mutations in asexually-reproducing somatic cells. In asexual microbes, bias reversals in the mutation spectrum can speed adaptation by increasing access to previously undersampled beneficial mutations. By analyzing tumors from 20 tissues, along with normal tissue and the germline, we demonstrate this effect in cancer. Non-hypermutated tumors reverse the germline mutation bias and have consistent spectra across tissues. These spectra changes carry the signature of hypoxia, and they facilitate positive selection in cancer genes. Hypermutated and non-hypermutated tumors thus acquire driver mutations differently: hypermutated tumors by higher mutation rates and non-hypermutated tumors by changing the mutation spectrum to reverse the germline mutation bias.

2.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724926

RESUMEN

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Profagos , Profagos/genética , Animales , Genoma Bacteriano/genética , Filogenia , Genoma Viral/genética , Bacterias/virología , Bacterias/genética , Bacterias/clasificación , Variación Genética
3.
Virus Evol ; 10(1): veae006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425472

RESUMEN

Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.

4.
Am Nat ; 202(4): 503-518, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792927

RESUMEN

AbstractRecent experimental evidence demonstrates that shifts in mutational biases-for example, increases in transversion frequency-can change the distribution of fitness effects of mutations (DFE). In particular, reducing or reversing a prevailing bias can increase the probability that a de novo mutation is beneficial. It has also been shown that mutator bacteria are more likely to emerge if the beneficial mutations they generate have a larger effect size than observed in the wild type. Here, we connect these two results, demonstrating that mutator strains that reduce or reverse a prevailing bias have a positively shifted DFE, which in turn can dramatically increase their emergence probability. Since changes in mutation rate and bias are often coupled through the gain and loss of DNA repair enzymes, our results predict that the invasion of mutator strains will be facilitated by shifts in mutation bias that offer improved access to previously undersampled beneficial mutations.


Asunto(s)
Tasa de Mutación , Mutación
5.
Proc Natl Acad Sci U S A ; 120(22): e2207355120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216547

RESUMEN

Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Filogenia , Mutación , Adaptación Fisiológica/genética , Genoma , Selección Genética , Evolución Molecular
6.
J Theor Biol ; 564: 111449, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36894132

RESUMEN

Within-host SARS-CoV-2 modelling studies have been published throughout the COVID-19 pandemic. These studies contain highly variable numbers of individuals and capture varying timescales of pathogen dynamics; some studies capture the time of disease onset, the peak viral load and subsequent heterogeneity in clearance dynamics across individuals, while others capture late-time post-peak dynamics. In this study, we curate multiple previously published SARS-CoV-2 viral load data sets, fit these data with a consistent modelling approach, and estimate the variability of in-host parameters including the basic reproduction number, R0, as well as the best-fit eclipse phase profile. We find that fitted dynamics can be highly variable across data sets, and highly variable within data sets, particularly when key components of the dynamic trajectories (e.g. peak viral load) are not represented in the data. Further, we investigated the role of the eclipse phase time distribution in fitting SARS-CoV-2 viral load data. By varying the shape parameter of an Erlang distribution, we demonstrate that models with either no eclipse phase, or with an exponentially-distributed eclipse phase, offer significantly worse fits to these data, whereas models with less dispersion around the mean eclipse time (shape parameter two or more) offered the best fits to the available data across all data sets used in this work. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Estudios de Cohortes , Carga Viral
7.
Proc Biol Sci ; 289(1976): 20220439, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642362

RESUMEN

Populations threatened by an abrupt environmental change-due to rapid climate change, pathogens or invasive competitors-may survive if they possess or generate genetic combinations adapted to the novel, challenging condition. If these genotypes are initially rare or non-existent, the emergence of lineages that allow a declining population to survive is known as 'evolutionary rescue'. By contrast, the genotypes required for survival could, by chance, be common before the environmental change. Here, considering both of these possibilities, we find that the risk of extinction can be lower in very small or very large populations, but peaks at intermediate population sizes. This pattern occurs when the survival genotype has a small deleterious effect before the environmental change. Since mildly deleterious mutations constitute a large fraction of empirically measured fitness effects, we suggest that this unexpected result-an intermediate size that puts a population at a greater risk of extinction-may not be unusual in the face of environmental change.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Adaptación Fisiológica/genética , Cambio Climático , Genotipo , Densidad de Población
8.
Am Nat ; 199(3): 313-329, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35175901

RESUMEN

AbstractWith the twofold cost of sex, derived asexual organisms have an immediate reproductive advantage over their sexual sisters. Yet the "twiggy" phylogenetic distribution of asexual lineages implies that they become extinct relatively quickly over evolutionary time. Meanwhile, bacteria and archaea have persisted for billions of years without requiring sexual reproduction. A simple explanation for this difference is that prokaryotes have very large population sizes that are not subject to the accumulation of deleterious mutations, but this implies that drift and mutational meltdown dominate derived asexual populations. Here, we explore a different hazard, quantifying the degree to which genetic variation is lost in asexual populations experiencing selective sweeps. Even though large populations generate diversity by mutation during sweeps, we find that populations that are safe from mutational meltdown may still be reduced to dangerous effective population sizes by sweeps. Thus, ironically, adaptation itself reduces further adaptive potential and may predispose asexual populations to extinction. We derive a simple approximation for the effective population size after a hard sweep and explore the impact of recent sweeps on evolutionary rescue. These factors may help to explain the phylogenetic twigginess of asexuals, the maintenance of sex and recombination, and the evolutionary persistence of prokaryotes.


Asunto(s)
Evolución Biológica , Reproducción Asexuada , Modelos Genéticos , Mutación , Filogenia , Reproducción/genética , Reproducción Asexuada/genética
9.
Evolution ; 76(3): 528-540, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989408

RESUMEN

Mutation accumulation (MA) experiments, in which de novo mutations are sampled and subsequently characterized, are an essential tool in understanding the processes underlying evolution. In microbial populations, MA protocols typically involve a period of population growth between severe bottlenecks, such that a single individual can form a visible colony. While it has long been appreciated that the action of positive selection during this growth phase cannot be eliminated, it is typically assumed to be negligible. Here, we quantify the effect of both positive and negative selection in MA studies, demonstrating that selective effects can substantially bias the distribution of fitness effects (DFE) and mutation rates estimated from typical MA protocols in microbes. We then present a simple correction for this bias that applies to both beneficial and deleterious mutations, and can be used to correct the observed DFE in multiple environments. We use simulated MA experiments to illustrate the extent to which the MA-inferred DFE differs from the underlying true DFE, and demonstrate that the proposed correction accurately reconstructs the true DFE over a wide range of scenarios; we also provide an example of these corrections applied to experimental data. These results highlight that positive selection during microbial MA experiments is in fact not negligible, but can be corrected to gain a more accurate understanding of fundamental evolutionary parameters.


Asunto(s)
Aptitud Genética , Acumulación de Mutaciones , Mutación , Tasa de Mutación , Sesgo de Selección , Selección Genética
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200465, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34839698

RESUMEN

Bacterial strains with a short minimal doubling time-'fast-growing' hosts-are more likely to contain prophages than their slow-growing counterparts. Pathogenic bacterial species are likewise more likely to carry prophages. We develop a bioinformatics pipeline to examine the distribution of prophages in fast- and slow-growing lysogens, and pathogenic and non-pathogenic lysogens, analysing both prophage length and gene content for each class. By fitting these results to a mathematical model of the evolutionary forces acting on prophages, we predict whether the observed differences can be attributed to different rates of lysogeny among the host classes, or other evolutionary pressures. We also test for significant differences in gene content among prophages, identifying genes that are preferentially lost or maintained in each class. We find that fast-growing hosts and pathogens have a greater fraction of full-length prophages, and our analysis predicts that induction rates are significantly reduced in slow-growing hosts and non-pathogenic hosts. Consistent with previous results, we find that several proteins involved in the packaging of new phage particles and lysis are preferentially lost in cryptic prophages. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Asunto(s)
Bacteriófagos , Rasgos de la Historia de Vida , Bacterias/genética , Bacteriófagos/genética , Lisogenia , Profagos/genética
11.
Evol Lett ; 5(5): 458-471, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34621533

RESUMEN

Although vaccination has been remarkably effective against some pathogens, for others, rapid antigenic evolution results in vaccination conferring only weak and/or short-lived protection. Consequently, considerable effort has been invested in developing more evolutionarily robust vaccines, either by targeting highly conserved components of the pathogen (universal vaccines) or by including multiple immunological targets within a single vaccine (multi-epitope vaccines). An unexplored third possibility is to vaccinate individuals with one of a number of qualitatively different vaccines, creating a "mosaic" of individual immunity in the population. Here we explore whether a mosaic vaccination strategy can deliver superior epidemiological outcomes to "conventional" vaccination, in which all individuals receive the same vaccine. We suppose vaccine doses can be distributed between distinct vaccine "targets" (e.g., different surface proteins against which an immune response can be generated) and/or immunologically distinct variants at these targets (e.g., strains); the pathogen can undergo antigenic evolution at both targets. Using simple mathematical models, here we provide a proof-of-concept that mosaic vaccination often outperforms conventional vaccination, leading to fewer infected individuals, improved vaccine efficacy, and lower individual risks over the course of the epidemic.

12.
J Biol Dyn ; 15(1): 327-341, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34142641

RESUMEN

Outbreaks of highly pathogenic strains of avian influenza (HPAI) cause high mortality in avian populations worldwide. When spread from avian reservoirs to humans, HPAI infections cause mortality in about 50% of human infections. Cases of human-to-human transmission of HPAI are relatively rare, and have, to date, only been reported in situations of close contact. These transmissions have resulted in isolated clusters of human HPAI infections, but have not yet caused a pandemic. Given the large number of human H5N1 HPAI infections to date, none of which has resulted in a pandemic, we estimate an upper bound on the probability of H5N1 pandemic emergence. We use this estimate to provide the likelihood of observing such a pandemic over the next decade. We then develop a more accurate parameter-based estimate of the emergence probability and predict the likelihood that, through rare mutations, an H5N1 influenza pandemic will emerge over the same time span.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Modelos Biológicos , Pandemias
13.
Phys Rev E ; 103(4-1): 042415, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005989

RESUMEN

Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of each component process is determined by the population size: deterministic components prevail in very large populations, while stochastic components are the driving mechanisms in small ones. Many natural populations, however, experience intermittent periods of growth, moving through states in which either stochastic or deterministic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the timing of population bottlenecks, we find that predictability increases with population size. We also find that predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to population bottlenecks.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Selección Genética
14.
PLoS Comput Biol ; 16(12): e1008482, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275597

RESUMEN

Integrated into their bacterial hosts' genomes, prophage sequences exhibit a wide diversity of length and gene content, from highly degraded cryptic sequences to intact, functional prophages that retain a full complement of lytic-function genes. We apply three approaches-bioinformatics, analytical modelling and computational simulation-to understand the diverse gene content of prophages. In the bioinformatics work, we examine the distributions of over 50,000 annotated prophage genes identified in 1384 prophage sequences, comparing the gene repertoires of intact and incomplete prophages. These data indicate that genes involved in the replication, packaging, and release of phage particles have been preferentially lost in incomplete prophages, while tail fiber, transposase and integrase genes are significantly enriched. Consistent with these results, our mathematical and computational approaches predict that genes involved in phage lytic function are preferentially lost, resulting in shorter prophages that often retain genes that benefit the host. Informed by these models, we offer novel hypotheses for the enrichment of integrase and transposase genes in cryptic prophages. Overall, we demonstrate that functional and cryptic prophages represent a diversity of genetic sequences that evolve along a parasitism-mutualism continuum.


Asunto(s)
Genes Virales , Profagos/genética , Interacciones Huésped-Patógeno , Anotación de Secuencia Molecular , Profagos/fisiología
15.
Theor Popul Biol ; 133: 168-179, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31758948

RESUMEN

Genome sequencing has revealed that prophages, viral sequences integrated in a bacterial chromosome, are abundant, accounting for as much as 20% of the bacterial genome. These sequences can confer fitness benefits to the bacterial host, but may also instigate cell death through induction. Several recent investigations have revealed that the distribution of prophage lengths is bimodal, with a clear distinction between small and large prophages. Here we develop a mathematical model of the evolutionary forces affecting the prophage size distribution, and fit this model to three recent data sets. This approach offers quantitative estimates for the relative rates of lysogeny, induction, mutational degradation and selection acting on a wide class of prophage sequences. The model predicts that large prophages are predominantly maintained by the introduction of new prophage sequences through lysogeny, whereas shorter prophages can be enriched when they no longer encode the genes necessary for induction, but still offer selective benefits to their hosts.


Asunto(s)
Lisogenia , Profagos , Secuencia de Bases , Evolución Biológica , Genoma Bacteriano , Lisogenia/genética , Profagos/genética
16.
Evolution ; 73(1): 92-98, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30430551

RESUMEN

Lytic viruses infect and kill host cells, producing a large number of viral copies. Temperate viruses, in contrast, are able to integrate viral genetic material into the host cell DNA, leaving a viable host cell. The evolutionary advantage of this strategy, lysogeny, has been demonstrated in complex environments that include spatial structure, oscillating population dynamics, or periodic environmental collapse. Here, we examine the evolutionary stability of the lysis-lysogeny decision, that is, we predict the long-term outcome of the evolution of lysogeny rates. We demonstrate that viruses with high rates of lysogeny are stable against invasion by more virulent viral strains even in simple environments, as long as the pool of susceptible hosts is not unlimited. This mirrors well-known results in both r-K selection theory and virulence evolution: although virulent viruses have a faster potential growth rate, temperate strains are able to maintain positive growth on a lower density of the limiting resource, susceptible hosts. We then outline scenarios in which the rate of lysogeny is predicted to evolve either toward full lysogeny or full lysis. Finally, we demonstrate conditions under which intermediate rates of lysogeny, as observed in temperate viruses in nature, can be sustained long-term. In general, intermediate lysogeny rates persist when the coupling between susceptible host density and virus density is relaxed.


Asunto(s)
Bacteriófagos/patogenicidad , Evolución Biológica , Lisogenia , Modelos Biológicos , Virulencia
17.
Genetics ; 210(3): 1075-1088, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30181193

RESUMEN

We investigate the fate of de novo mutations that occur during the in-host replication of a pathogenic virus, predicting the probability that such mutations are passed on during disease transmission to a new host. Using influenza A virus as a model organism, we develop a life-history model of the within-host dynamics of the infection, deriving a multitype branching process with a coupled deterministic model to capture the population of available target cells. We quantify the fate of neutral mutations and mutations affecting five life-history traits: clearance, attachment, budding, cell death, and eclipse phase timing. Despite the severity of disease transmission bottlenecks, our results suggest that in a single transmission event, several mutations that appeared de novo in the donor are likely to be transmitted to the recipient. Even in the absence of a selective advantage for these mutations, the sustained growth phase inherent in each disease transmission cycle generates genetic diversity that is not eliminated during the transmission bottleneck.


Asunto(s)
Variación Genética , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Humanos , Modelos Genéticos , Mutación , Procesos Estocásticos
18.
PLoS Biol ; 16(9): e2006738, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248089

RESUMEN

The emergence and re-emergence of pathogens remains a major public health concern. Unfortunately, when and where pathogens will (re-)emerge is notoriously difficult to predict, as the erratic nature of those events is reinforced by the stochastic nature of pathogen evolution during the early phase of an epidemic. For instance, mutations allowing pathogens to escape host resistance may boost pathogen spread and promote emergence. Yet, the ecological factors that govern such evolutionary emergence remain elusive because of the lack of ecological realism of current theoretical frameworks and the difficulty of experimentally testing their predictions. Here, we develop a theoretical model to explore the effects of the heterogeneity of the host population on the probability of pathogen emergence, with or without pathogen evolution. We show that evolutionary emergence and the spread of escape mutations in the pathogen population is more likely to occur when the host population contains an intermediate proportion of resistant hosts. We also show that the probability of pathogen emergence rapidly declines with the diversity of resistance in the host population. Experimental tests using lytic bacteriophages infecting their bacterial hosts containing Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR-Cas) immune defenses confirm these theoretical predictions. These results suggest effective strategies for cross-species spillover and for the management of emerging infectious diseases.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Interacciones Huésped-Patógeno , Animales , Bacteriófagos/fisiología , Biodiversidad , Enfermedades Transmisibles/parasitología , Resistencia a la Enfermedad , Humanos , Modelos Biológicos , Probabilidad
19.
Evolution ; 71(8): 2080-2089, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28590013

RESUMEN

Sequencing of bacterial genomes has revealed an abundance of prophage sequences in many bacterial species. Since these sequences are accessible, through recombination, to infecting phages, bacteria carry an arsenal of genetic material that can be used by these viruses. We develop a mathematical model to isolate the effects of this phenomenon on the coevolution of temperate phage and bacteria. The model predicts that prophage sequences may play a key role in maintaining the phage population in situations that would otherwise favor host cell resistance. In addition, prophage recombination facilitates the existence of multiple phage types, thus promoting diverse co-existence in the phage-host ecosystem. Finally, because the host carries an archive of previous phage strategies, prophage recombination can drive waves of innovation in the host cell population.


Asunto(s)
Profagos/genética , Recombinación Genética , Bacteriófagos , Lisogenia
20.
J Biol Dyn ; 11(sup2): 264-284, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28426329

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Sistemas CRISPR-Cas , Modelos Biológicos , Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...