Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 514(3): 940-945, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31088681

RESUMEN

Focal defects in articular cartilage are unable to self-repair and, if left untreated, are a leading risk factor for osteoarthritis. This study examined cartilage degeneration surrounding a defect and then assessed whether infilling the defect prevents degeneration. We created a focal chondral defect in porcine osteochondral explants and cultured them ex vivo with and without dynamic compressive loading to decouple the role of loading. When compared to a defect in a porcine knee four weeks post-injury, this model captured loss in sulfated glycosaminoglycans (sGAGs) along the defect's edge that was observed in vivo, but this loss was not load dependent. Loading, however, reduced the indentation modulus of the surrounding cartilage. After infilling with in situ polymerized hydrogels that were soft (100 kPa) or stiff (1 MPa) and which produced swelling pressures of 13 and 310 kPa, respectively, sGAG loss was reduced. This reduction correlated with increased hydrogel stiffness and swelling pressure, but was not affected by loading. This ex vivo model recapitulates sGAG loss surrounding a defect and, when infilled with a mechanically supportive hydrogel, degeneration is minimized.


Asunto(s)
Enfermedades de los Cartílagos/patología , Cartílago Articular/patología , Animales , Fenómenos Biomecánicos , Enfermedades de los Cartílagos/terapia , Modelos Animales de Enfermedad , Femenino , Hidrogeles/uso terapéutico , Proteoglicanos/análisis , Porcinos
2.
Acta Biomater ; 64: 41-49, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29037894

RESUMEN

Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. STATEMENT OF SIGNIFICANCE: Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models.


Asunto(s)
Cartílago Articular/química , Modelos Teóricos , Sefarosa/química , Animales , Elasticidad , Porosidad , Porcinos
3.
J Mech Behav Biomed Mater ; 65: 454-465, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664813

RESUMEN

Multi-layer hydrogels are promising for tissue engineering due to the ability to control the local properties within each layer. However, the interface that forms between each layer has the potential to affect the performance of the hydrogel. The goals of this study were to characterize how the interface forms via its thickness and mechanical properties, identify its impact on the overall hydrogel properties, and provide new insights into how to control the interface. A photo-clickable poly(ethylene glycol) hydrogel was used to form bilayer hydrogels that were sequentially polymerized in a step-and-repeat process. Different processing conditions were studied: the time (0-20min) before initiating polymerization of the second layer (soak time, ts) and the hydrogel crosslink density (the same, less crosslinked, or more crosslinked) of the first layer as compared to the second layer. Interface thickness was characterized by confocal microscopy, monomer transport by Fickian diffusion, single and bilayer hydrogel mechanics by bulk moduli measurements, and interface moduli measurements using AFM, nanoindentation, and strain mapping. The interface thickness ranged from ~70 to 600µm (1-10% of total height) depending on processing conditions, but did not affect the bulk hydrogel modulus. Analysis of monomer transport revealed that convection, due to changes in hydrogel swelling, and diffusion contribute to interface thickness. Nanomechanical analysis of bilayer hydrogels formed from soft (75kPa) and stiff (250kPa) layers showed a gradient in elastic modulus across the interface, which corresponded to strain maps. In summary, this work identifies that diffusive and convective transport of monomers across the interface controls its thickness and that a mechanically robust interface forms, which does not affect the hydrogel modulus. By controlling the processing conditions, the thickness of the interface can be tuned without affecting the mechanical properties of the bulk hydrogel.


Asunto(s)
Hidrogeles/análisis , Polietilenglicoles , Ingeniería de Tejidos , Química Clic , Módulo de Elasticidad , Compuestos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA