Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 32(4): 042003, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33155576

RESUMEN

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

2.
Eur J Neurol ; 20(6): 891-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23305304

RESUMEN

BACKGROUND AND PURPOSE: Polymorphic paraoxonase (PON1) variants can variably prevent low- and high-density lipoprotein oxidation, but their role in provoking atherosclerosis remained unclear. We addressed this issue by profiling PON1 polymorphisms and enzymatic activities, and assessing atherosclerosis and cerebral arteriosclerosis severity in post-stroke patients. METHODS: Carotid artery intima-media-thickness (IMT), cerebral white matter lesions (WML), serum PON1 -108C/T, Q192R and L55M polymorphisms, and PON and acetylcholinesterase (AChE) enzyme activities were determined in 237 patients. RESULTS: Genetic variation at the PON1 locus showed a strong influence on PON1 activity in ischaemic stroke patients, but lacked direct influence on IMT. Stroke patients with PON1 QQ192 or MM55 genotypes demonstrated lower PON and arylesterase activities at both Day 1 and 12 months post-stroke than patients with either RQ/RR192 or LM/LL55 genotypes (P < 0.001). Furthermore, patients with carotid atherosclerosis and/or cerebral arteriosclerosis expressed as IMT, carotid plaques and WML had lower 12 months PON1 activity than patients without (P = 0.02, P = 0.027 and P = 0.001, respectively), and PON and AChE hydrolysis rates were more tightly correlated in patients carrying the PON1 192R compared with the 192QQ allele, in a gene dose-dependent manner (P < 0.001). CONCLUSION: Our findings show inverse PON1 activity-carotid atherosclerosis and -cerebral arteriosclerosis association in stroke patients: the lower the PON1 activity the more progressed is the atherosclerotic process and the weaker is the association with AChE activity. Extending previous PON1 genetic studies in stroke populations, our study emphasizes the PON1 activity as a potential anti-atherogenic element and proposes involvement of cholinesterase activities in its effects.


Asunto(s)
Acetilcolinesterasa/metabolismo , Arildialquilfosfatasa/genética , Enfermedades de las Arterias Carótidas/genética , Arteriosclerosis Intracraneal/genética , Polimorfismo Genético/genética , Accidente Cerebrovascular/genética , Anciano , Anciano de 80 o más Años , Arildialquilfosfatasa/metabolismo , Enfermedades de las Arterias Carótidas/enzimología , Enfermedades de las Arterias Carótidas/epidemiología , Estudios de Cohortes , Activación Enzimática/fisiología , Humanos , Arteriosclerosis Intracraneal/enzimología , Arteriosclerosis Intracraneal/epidemiología , Persona de Mediana Edad , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...