Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Interdiscip Sci ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951382

RESUMEN

Image classification, a fundamental task in computer vision, faces challenges concerning limited data handling, interpretability, improved feature representation, efficiency across diverse image types, and processing noisy data. Conventional architectural approaches have made insufficient progress in addressing these challenges, necessitating architectures capable of fine-grained classification, enhanced accuracy, and superior generalization. Among these, the vision transformer emerges as a noteworthy computer vision architecture. However, its reliance on substantial data for training poses a drawback due to its complexity and high data requirements. To surmount these challenges, this paper proposes an innovative approach, MetaV, integrating meta-learning into a vision transformer for medical image classification. N-way K-shot learning is employed to train the model, drawing inspiration from human learning mechanisms utilizing past knowledge. Additionally, deformational convolution and patch merging techniques are incorporated into the vision transformer model to mitigate complexity and overfitting while enhancing feature representation. Augmentation methods such as perturbation and Grid Mask are introduced to address the scarcity and noise in medical images, particularly for rare diseases. The proposed model is evaluated using diverse datasets including Break His, ISIC 2019, SIPaKMed, and STARE. The achieved performance accuracies of 89.89%, 87.33%, 94.55%, and 80.22% for Break His, ISIC 2019, SIPaKMed, and STARE, respectively, present evidence validating the superior performance of the proposed model in comparison to conventional models, setting a new benchmark for meta-vision image classification models.

2.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36772315

RESUMEN

The integration of Micro Electronic Mechanical Systems (MEMS) sensor technology in smartphones has greatly improved the capability for Human Activity Recognition (HAR). By utilizing Machine Learning (ML) techniques and data from these sensors, various human motion activities can be classified. This study performed experiments and compiled a large dataset of nine daily activities, including Laying Down, Stationary, Walking, Brisk Walking, Running, Stairs-Up, Stairs-Down, Squatting, and Cycling. Several ML models, such as Decision Tree Classifier, Random Forest Classifier, K Neighbors Classifier, Multinomial Logistic Regression, Gaussian Naive Bayes, and Support Vector Machine, were trained on sensor data collected from accelerometer, gyroscope, and magnetometer embedded in smartphones and wearable devices. The highest test accuracy of 95% was achieved using the random forest algorithm. Additionally, a custom-built Bidirectional Long-Short-Term Memory (Bi-LSTM) model, a type of Recurrent Neural Network (RNN), was proposed and yielded an improved test accuracy of 98.1%. This approach differs from traditional algorithmic-based human activity detection used in current wearable technologies, resulting in improved accuracy.


Asunto(s)
Sistemas Microelectromecánicos , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Teorema de Bayes , Actividades Humanas
3.
Sci Rep ; 12(1): 20876, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463244

RESUMEN

Technology is playing an important role is healthcare particularly as it relates to disease prevention and detection. This is evident in the COVID-19 era as different technologies were deployed to test, detect and track patients and ensure COVID-19 protocol compliance. The White Spot Disease (WSD) is a very contagious disease caused by virus. It is widespread among shrimp farmers due to its mode of transmission and source. Considering the growing concern about the severity of the disease, this study provides a predictive model for diagnosis and detection of WSD among shrimp farmers using visualization and machine learning algorithms. The study made use of dataset from Mendeley repository. Machine learning algorithms; Random Forest classification and CHAID were applied for the study, while Python was used for implementation of algorithms and for visualization of results. The results achieved showed high prediction accuracy (98.28%) which is an indication of the suitability of the model for accurate prediction of the disease. The study would add to growing knowledge about use of technology to manage White Spot Disease among shrimp farmers and ensure real-time prediction during and post COVID-19.


Asunto(s)
COVID-19 , Liquen Escleroso y Atrófico , Humanos , Animales , Agricultores , COVID-19/diagnóstico , Crustáceos , Alimentos Marinos
4.
Comput Intell Neurosci ; 2022: 3813705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909874

RESUMEN

There are growing concerns about the mortality due to Breast cancer many of which often result from delayed detection and treatment. So an effective computational approach is needed to develop a predictive model which will help patients and physicians to manage the situation timely. This study presented a Weighted Bayesian Belief Network (WBBN) modeling for breast cancer prediction using the UCI breast cancer dataset. New automated ranking method was used to assign proper weights to attribute value pair based on their impact on causing the disease. Association between attributes was generated using weighted association rule mining between two attributes, multiattributes, and with class labels to generate rules. Weighted Bayesian confidence and weighted Bayesian lift measures were used to produce strong rules to build the model. To build WBBN, the Open Markov tool was used for structure and parametric learning using generated strong rules. The model was trained using 70% records and tested on 30% records with a threshold value of minimum support = 36% and confidence = 70% which produced results with an accuracy of 97.18%. Experimental results show that WBBN achieved better results in most cases compared to other predictive models. The study would contribute to the fight against breast cancer and the quality of treatment.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Algoritmos , Teorema de Bayes , Neoplasias de la Mama/diagnóstico , Femenino , Humanos
5.
Comput Intell Neurosci ; 2022: 6093613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444694

RESUMEN

The use of speech as a biomedical signal for diagnosing COVID-19 is investigated using statistical analysis of speech spectral features and classification algorithms based on machine learning. It is established that spectral features of speech, obtained by computing the short-time Fourier Transform (STFT), get altered in a statistical sense as a result of physiological changes. These spectral features are then used as input features to machine learning-based classification algorithms to classify them as coming from a COVID-19 positive individual or not. Speech samples from healthy as well as "asymptomatic" COVID-19 positive individuals have been used in this study. It is shown that the RMS error of statistical distribution fitting is higher in the case of speech samples of COVID-19 positive speech samples as compared to the speech samples of healthy individuals. Five state-of-the-art machine learning classification algorithms have also been analyzed, and the performance evaluation metrics of these algorithms are also presented. The tuning of machine learning model parameters is done so as to minimize the misclassification of COVID-19 positive individuals as being COVID-19 negative since the cost associated with this misclassification is higher than the opposite misclassification. The best performance in terms of the "recall" metric is observed for the Decision Forest algorithm which gives a recall value of 0.7892.


Asunto(s)
COVID-19 , Habla , Algoritmos , Biomarcadores , COVID-19/diagnóstico , Humanos , Aprendizaje Automático
6.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960443

RESUMEN

This paper proposes a high-order MIMO antenna operating at 3.5 GHz for a 5G new radio. Using an eighth-mode substrate integrated waveguide (EMSIW) cavity and considering a typical smartphone scenario, a two-element MIMO antenna is developed and extended to a twelve-element MIMO. These MIMO elements are closely spaced, and by employing multiple diversity techniques, high isolation is achieved without using a decoupling network. The asymmetric EMSIW structures resulted in radiation pattern diversity, and their orthogonal placement provides polarization diversity. The radiation characteristics and diversity performance are parametrically optimized for a two-element MIMO antenna. The experimental results exhibited 6.0 dB and 10.0 dB bandwidths of 250 and 100 MHz, respectively. The measured and simulated radiation patterns are closely matched with a peak gain of 3.4 dBi and isolation ≥36 dB. Encouraged with these results, higher-order MIMO, namely, four- and twelve-element MIMO are investigated, and isolation ≥35 and ≥22 dB are achieved, respectively. The channel capacity is found equal to 56.37 bps/Hz for twelve-element MIMO, which is nearly 6.25 times higher than the two-element counterpart. The hand and head proximity analysis reveal that the proposed antenna performances are within the acceptable limit. A detailed comparison with the previous works demonstrates that the proposed antenna offers a simple, low-cost, and compact MIMO antenna design solution with a high diversity performance.


Asunto(s)
Teléfono Inteligente , Tecnología Inalámbrica , Diseño de Equipo , Registros
7.
Sensors (Basel) ; 21(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920360

RESUMEN

The direction-of-arrival (DoA) estimation of an acoustic source can be estimated with a uniform linear array using classical techniques such as generalized cross-correlation, beamforming, subspace techniques, etc. However, these methods require a search in the angular space and also have a higher angular error at the end-fire. In this paper, we propose the use of regression techniques to improve the results of DoA estimation at all angles including the end-fire. The proposed methodology employs curve-fitting on the received multi-channel microphone signals, which when applied in tandem with support vector regression (SVR) provides a better estimation of DoA as compared to the conventional techniques and other polynomial regression techniques. A multilevel regression technique is also proposed, which further improves the estimation accuracy at the end-fire. This multilevel regression technique employs the use of linear regression over the results obtained from SVR. The techniques employed here yielded an overall 63% improvement over the classical generalized cross-correlation technique.

8.
J Acoust Soc Am ; 139(5): 2815, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250174

RESUMEN

Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...