Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 6(23): 5956-5968, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622975

RESUMEN

The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and ß-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and ß-thalassemia.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Talasemia beta/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Proteínas de Unión al ARN/genética
2.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358447

RESUMEN

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Factores Reguladores del Interferón/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proto-Oncogenes Mas , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Proteínas Supresoras de Tumor/genética
3.
Cell Rep ; 30(9): 3105-3116.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130910

RESUMEN

The mammalian heart is incapable of regenerating a sufficient number of cardiomyocytes to ameliorate the loss of contractile muscle after acute myocardial injury. Several reports have demonstrated that mononucleated cardiomyocytes are more responsive than are binucleated cardiomyocytes to pro-proliferative stimuli. We have developed a strategy to isolate and characterize highly enriched populations of mononucleated and binucleated cardiomyocytes at various times of development. Our results suggest that an E2f/Rb transcriptional network is central to the divergence of these two populations and that remnants of the differences acquired during the neonatal period remain in adult cardiomyocytes. Moreover, inducing binucleation by genetically blocking the ability of cardiomyocytes to complete cytokinesis leads to a reduction in E2f target gene expression, directly linking the E2f pathway with nucleation. These data identify key molecular differences between mononucleated and binucleated mammalian cardiomyocytes that can be used to leverage cardiomyocyte proliferation for promoting injury repair in the heart.


Asunto(s)
Núcleo Celular/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Núcleo Celular/ultraestructura , Proliferación Celular , Separación Celular , Regulación hacia Abajo/genética , Factores de Transcripción E2F/metabolismo , Citometría de Flujo , Fase G1 , Ratones Noqueados , Miocitos Cardíacos/ultraestructura , Proteínas Proto-Oncogénicas/metabolismo , Regeneración , Proteína de Retinoblastoma/metabolismo , Fase S
6.
Am J Hum Genet ; 99(2): 481-8, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27486782

RESUMEN

Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis.


Asunto(s)
Empalme Alternativo/genética , Análisis Mutacional de ADN , Exoma/genética , Sitios Genéticos/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Plaquetas/citología , Sistemas CRISPR-Cas , Edición Génica , Células Madre Hematopoyéticas/citología , Humanos , Megacariocitos/citología , Recuento de Plaquetas
7.
Proc Natl Acad Sci U S A ; 113(16): 4434-9, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044088

RESUMEN

Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Factor de Transcripción GATA1/metabolismo , Mutación , Elementos de Respuesta , Transcripción Genética , Anemia de Diamond-Blackfan/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistemas CRISPR-Cas , Factor de Transcripción GATA1/genética , Humanos , Células K562 , Motivos de Nucleótidos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda
8.
Pediatr Res ; 79(3): 366-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26575596

RESUMEN

Blood cell production or hematopoiesis is one of the most well-understood paradigms of cell differentiation in the body. The majority of work on hematopoiesis comes from studies that have primarily been conducted in mice, zebrafish, or other valuable model systems. However, it is clear that such model organisms may not consistently and faithfully mimic what is observed in humans with blood disorders. Moreover, there is significant divergence between species that is increasingly being appreciated at the genomic level. As a result, there is an opportunity to use observations in humans to provide a refined view of hematopoiesis. Here, we discuss vignettes from our work that illustrate how insight from human genetics can improve our understanding of blood cell production and identify promising therapeutic approaches for blood disorders.


Asunto(s)
Células Sanguíneas/citología , Hematopoyesis/fisiología , Animales , Diferenciación Celular , Eritrocitos/citología , Eritropoyesis , Hemoglobina Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hemoglobinas/genética , Humanos , Ratones
9.
Cell Stem Cell ; 18(1): 73-78, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26607381

RESUMEN

Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.


Asunto(s)
Eritrocitos/citología , Células Madre/citología , Sistemas CRISPR-Cas , Diferenciación Celular , Citocinas/metabolismo , Células Madre Embrionarias/citología , Sangre Fetal/citología , Técnicas Genéticas , Variación Genética , Genoma Humano , Células Madre Hematopoyéticas/citología , Hemoglobinas/análisis , Humanos , Mutación , Células Madre Pluripotentes/citología , Medicina Regenerativa/métodos
10.
J Clin Invest ; 125(4): 1665-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25705881

RESUMEN

Macrocytic anemia with abnormal erythropoiesis is a common feature of megaloblastic anemias, congenital dyserythropoietic anemias, and myelodysplastic syndromes. Here, we characterized a family with multiple female individuals who have macrocytic anemia. The proband was noted to have dyserythropoiesis and iron overload. After an extensive diagnostic evaluation that did not provide insight into the cause of the disease, whole-exome sequencing of multiple family members revealed the presence of a mutation in the X chromosomal gene ALAS2, which encodes 5'-aminolevulinate synthase 2, in the affected females. We determined that this mutation (Y365C) impairs binding of the essential cofactor pyridoxal 5'-phosphate to ALAS2, resulting in destabilization of the enzyme and consequent loss of function. X inactivation was not highly skewed in wbc from the affected individuals. In contrast, and consistent with the severity of the ALAS2 mutation, there was a complete skewing toward expression of the WT allele in mRNA from reticulocytes that could be recapitulated in primary erythroid cultures. Together, the results of the X inactivation and mRNA studies illustrate how this X-linked dominant mutation in ALAS2 can perturb normal erythropoiesis through cell-nonautonomous effects. Moreover, our findings highlight the value of whole-exome sequencing in diagnostically challenging cases for the identification of disease etiology and extension of the known phenotypic spectrum of disease.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Anemia Diseritropoyética Congénita/genética , Anemia Macrocítica/genética , Eritropoyesis/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación Missense , Mutación Puntual , 5-Aminolevulinato Sintetasa/metabolismo , Adulto , Células Cultivadas , Exoma/genética , Femenino , Genes Dominantes , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/sangre , Hemorragia/etiología , Humanos , Sobrecarga de Hierro/etiología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Embarazo , Complicaciones Hematológicas del Embarazo/genética , Unión Proteica , Conformación Proteica , Trastornos Puerperales/etiología , Fosfato de Piridoxal/metabolismo , ARN Mensajero/genética , Reticulocitos/metabolismo , Inactivación del Cromosoma X
11.
Am J Hematol ; 90(5): 386-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25615569

RESUMEN

Genome-wide association studies (GWAS) hold tremendous promise to improve our understanding of human biology. Recent GWAS have revealed over 75 loci associated with erythroid traits, including the 4q27 locus that is associated with red blood cell size (mean corpuscular volume). The close linkage disequilibrium block at this locus harbors the CCNA2 gene that encodes cyclin A2. CCNA2 mRNA is highly expressed in human and murine erythroid progenitor cells and regulated by the essential erythroid transcription factor GATA1. To understand the role of cyclin A2 in erythropoiesis, we have reduced expression of this gene using short hairpin RNAs in a primary murine erythroid culture system. We demonstrate that cyclin A2 levels affect erythroid cell size by regulating the passage through cytokinesis during the final cell division of terminal erythropoiesis. Our study provides new insight into cell cycle regulation during terminal erythropoiesis and more generally illustrates the value of functional GWAS follow-up to gain mechanistic insight into hematopoiesis.


Asunto(s)
Ciclina A2/genética , Citocinesis/genética , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Genoma , ARN Mensajero/genética , Animales , Diferenciación Celular , Tamaño de la Célula , Ciclina A2/antagonistas & inhibidores , Ciclina A2/metabolismo , Células Precursoras Eritroides/citología , Estudios de Seguimiento , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Ratones , Cultivo Primario de Células , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...