Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Brain ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456468

RESUMEN

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

2.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38330234

RESUMEN

CONTEXT: Low birth weight, as seen in Silver-Russell syndrome (SRS), is associated with later cardiometabolic disease. Data on long term outcomes and adult body composition in SRS are limited. OBJECTIVE: To evaluate body composition and metabolic health in adults with SRS. DESIGN: This was an observational study. Body composition and metabolic health were assessed at a single appointment. Individuals with SRS were compared with unaffected men and women (from the Southampton Women's Survey (SWS)). SETTING: Clinical research facilities across the UK. PARTICIPANTS: 25 individuals with molecularly-confirmed SRS aged ≥18 years. MAIN OUTCOME MEASURES: Fat mass, lean mass, bone mineral density (BMD), blood pressure, lipids, and blood glucose were measured. RESULTS: 25 adults with SRS were included (52% female). The median age was 32.9 years (range 22.0-69.7). Fat percentage was greater in the SRS group than the SWS cohort (44.1% vs 30.3%, p<0.001). Fat mass index was similar (9.6 vs 7.8, p=0.3). Lean mass percentage (51.8% vs 66.2%, p<0.001) and lean mass index (13.5 kg/m2 vs 17.3 kg/m2, p<0.001) were lower in the SRS group than the SWS cohort. BMD was lower in the SRS group than the SWS cohort (1.08 vs 1.24, p<0.001) (all median values). Total cholesterol was ≥5mmol/L in 52.0%. Triglyceride levels were ≥1.7mmol/L in 20.8%. Fasting blood glucose levels were ≥6.1mmol/L in 25.0%. Hypertension was present in 33.3%. CONCLUSIONS: Adults with SRS have an unfavourable body composition and predisposition to cardiometabolic disease. These results support the need for a health surveillance strategy to mitigate adverse outcomes.

4.
Clin Genet ; 105(5): 555-560, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38287449

RESUMEN

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Mutación , Mutación Missense/genética , Fenotipo , Factores de Transcripción/genética
6.
Mol Genet Genomic Med ; 11(12): e2256, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592902

RESUMEN

BACKGROUND: Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. METHODS: We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. RESULTS: We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. CONCLUSION: Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation.


Asunto(s)
Ictiosis Lamelar , Ictiosis , Degeneración Macular , Humanos , Mutación , Degeneración Macular/genética , Retina/metabolismo , Ictiosis/genética , Carbono , Proteínas del Ojo/genética , Proteínas de la Membrana/genética
7.
Am J Hum Genet ; 110(8): 1343-1355, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541188

RESUMEN

Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.


Asunto(s)
Genoma Humano , Trastornos del Neurodesarrollo , Humanos , Genoma Humano/genética , Mapeo Cromosómico , Secuencia de Bases , Mutación INDEL , Trastornos del Neurodesarrollo/genética
8.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37467750

RESUMEN

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , ARN Helicasas DEAD-box/genética , Diclorodifenil Dicloroetileno , ADN Helicasas , Mamíferos , Proteínas de Neoplasias/genética
9.
Genet Med ; 25(10): 100927, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422718

RESUMEN

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Asunto(s)
Anomalías Craneofaciales , Hipospadias , Masculino , Humanos , Hipospadias/genética , Factores de Empalme de ARN/genética , Empalme del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transactivadores/genética , Proteínas de Unión al ARN/genética
10.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37523899

RESUMEN

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Asunto(s)
Epilepsia , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Humanos , Lactante , Recién Nacido , Epilepsia/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/metabolismo
11.
Front Immunol ; 14: 1186575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377976

RESUMEN

Background: Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is associated with biallelic variants in SGPL1, comprising a multisystemic disease characterized by steroid resistant nephrotic syndrome, primary adrenal insufficiency, neurological problems, skin abnormalities and immunodeficiency in described cases. Signal transducer and activator of transcription 1 (STAT1) plays an important role in orchestrating an appropriate immune response through JAK-STAT pathway. Biallelic STAT1 loss of function (LOF) variants lead to STAT1 deficiency with a severe phenotype of immunodeficiency with increased frequency of infections and poor outcome if untreated. Case presentation: We report novel homozygous SGPL1 and STAT1 variants in a newborn of Gambian ethnicity with clinical features of SPLIS and severe combined immunodeficiency. The patient presented early in life with nephrotic syndrome, severe respiratory infection requiring ventilation, ichthyosis, and hearing loss, with T-cell lymphopenia. The combination of these two conditions led to severe combined immunodeficiency with inability to clear respiratory tract infections of viral, fungal, and bacterial nature, as well as severe nephrotic syndrome. The child sadly died at 6 weeks of age despite targeted treatments. Conclusion: We report the finding of two novel, homozygous variants in SGPL1 and STAT1 in a patient with a severe clinical phenotype and fatal outcome early in life. This case highlights the importance of completing the primary immunodeficiency genetic panel in full to avoid missing a second diagnosis in other patients presenting with similar severe clinical phenotype early in life. For SPLIS no curative treatment is available and more research is needed to investigate different treatment modalities. Hematopoietic stem cell transplantation (HSCT) shows promising results in patients with autosomal recessive STAT1 deficiency. For this patient's family, identification of the dual diagnosis has important implications for future family planning. In addition, future siblings with the familial STAT1 variant can be offered curative treatment with HSCT.


Asunto(s)
Síndromes de Inmunodeficiencia , Síndrome Nefrótico , Inmunodeficiencia Combinada Grave , Humanos , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Quinasas Janus/metabolismo , Síndrome Nefrótico/genética , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Recién Nacido
12.
J Hum Genet ; 68(7): 445-453, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36864284

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS: Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS: We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION: Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.


Asunto(s)
Mutación Missense , Trastornos del Neurodesarrollo , Factores de Elongación Transcripcional , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional/genética , Trastornos del Neurodesarrollo/genética
13.
J Med Genet ; 60(7): 712-716, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36543535

RESUMEN

INTRODUCTION: SPRY1 encodes protein sprouty homolog 1 (Spry-1), a negative regulator of receptor tyrosine kinase signalling. Null mutant mice display kidney/urinary tract abnormalities and altered size of the skull; complete loss-of-function of Spry-1 in humans has not been reported. METHODS: Analysis of whole-genome sequencing data from individuals with craniosynostosis enrolled in the 100,000 Genomes Project identified a likely pathogenic variant within SPRY1. Reverse-transcriptase PCR and western blot analysis were used to investigate the effect of the variant on SPRY1 mRNA and protein, in lymphoblastoid cell lines from the patient and both parents. RESULTS: A nonsense variant in SPRY1, encoding p.(Leu27*), was confirmed to be heterozygous in the unaffected parents and homozygous in the child. The child's phenotype, which included sagittal craniosynostosis, subcutaneous cystic lesions overlying the lambdoid sutures, hearing loss associated with bilateral cochlear and vestibular dysplasia and a unilateral renal cyst, overlapped the features reported in Spry1-/- null mice. Functional studies supported escape from nonsense-mediated decay, but western blot analysis demonstrated complete absence of full-length protein in the affected child and a marked reduction in both parents. CONCLUSION: This is the first report of complete loss of Spry-1 function in humans, associated with abnormalities of the cranial sutures, inner ear, and kidneys.


Asunto(s)
Craneosinostosis , Oído Interno , Sistema Urinario , Ratones , Animales , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Ratones Noqueados , Craneosinostosis/genética
14.
Neuromuscul Disord ; 33(1): 50-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522252

RESUMEN

Individuals with biallelic TBCK pathogenic variants present in infancy with distinctive facial features, profound hypotonia, severe intellectual impairment and epilepsy. Although rare, it may mimic other neurogenetic disorders leading to extensive investigations. Improved understanding of the clinical phenotype can support early monitoring of complications due to respiratory insufficiency. We present six individuals who were found to have pathogenic biallelic TBCK variants. The clinico-radiological and diagnostic records were reviewed. Five individuals were diagnosed with hypoventilation, requiring respiratory support, highlighting the need for early respiratory surveillance. Characteristic brain imaging in our cohort included periventricular leukomalacia-like changes. We recommend screening for TBCK in hypotonic children with periventricular leukomalacia-like changes, particularly in the absence of prematurity.


Asunto(s)
Leucomalacia Periventricular , Proteínas Serina-Treonina Quinasas , Humanos , Encéfalo , Hipoventilación/diagnóstico , Hipoventilación/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Niño
15.
Front Endocrinol (Lausanne) ; 13: 953707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060959

RESUMEN

Background: Heterozygous de novo variants in SAMD9 cause MIRAGE syndrome, a complex multisystem disorder involving Myelodysplasia, Infection, Restriction of growth, Adrenal hypoplasia, Genital phenotypes, and Enteropathy. The range of additional clinical associations is expanding and includes disrupted placental development, poor post-natal growth and endocrine features. Increasingly, milder phenotypic features such as hypospadias in small for gestational age (SGA) boys and normal adrenal function are reported. Some children present with isolated myelodysplastic syndrome (MDS/monosomy 7) without MIRAGE features. Objective: We aimed to investigate: 1) the range of reported SAMD9 variants, clinical features, and possible genotype-phenotype correlations; 2) whether SAMD9 disruption affects placental function and leads to pregnancy loss/recurrent miscarriage (RM); 3) and if pathogenic variants are associated with isolated fetal growth restriction (FGR). Methods: Published data were analyzed, particularly reviewing position/type of variant, pregnancy, growth data, and associated endocrine features. Genetic analysis of SAMD9 was performed in products of conception (POC, n=26), RM couples, (couples n=48; individuals n=96), children with FGR (n=44), SGA (n=20), and clinical Silver-Russell Syndrome (SRS, n=8), (total n=194). Results: To date, SAMD9 variants are reported in 116 individuals [MDS/monosomy 7, 64 (55.2%); MIRAGE, 52 (44.8%)]. Children with MIRAGE features are increasingly reported without an adrenal phenotype (11/52, 21.2%). Infants without adrenal dysfunction were heavier at birth (median 1515 g versus 1020 g; P < 0.05) and born later (median 34.5 weeks versus 31.0; P < 0.05) compared to those with adrenal insufficiency. In MIRAGE patients, hypospadias is a common feature. Additional endocrinopathies include hypothyroidism, hypo- and hyper-glycemia, short stature and panhypopituitarism. Despite this increasing range of phenotypes, genetic analysis did not reveal any likely pathogenic variants/enrichment of specific variants in SAMD9 in the pregnancy loss/growth restriction cohorts studied. Conclusion: MIRAGE syndrome is more phenotypically diverse than originally reported and includes growth restriction and multisystem features, but without adrenal insufficiency. Endocrinopathies might be overlooked or develop gradually, and may be underreported. As clinical features including FGR, severe infections, anemia and lung problems can be non-specific and are often seen in neonatal medicine, SAMD9-associated conditions may be underdiagnosed. Reaching a specific diagnosis of MIRAGE syndrome is critical for personalized management.


Asunto(s)
Insuficiencia Suprarrenal , Hipospadias , Síndromes Mielodisplásicos , Insuficiencia Suprarrenal/complicaciones , Insuficiencia Suprarrenal/genética , Deleción Cromosómica , Cromosomas Humanos Par 7 , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Hipospadias/complicaciones , Péptidos y Proteínas de Señalización Intracelular , Masculino , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/genética , Fenotipo , Placenta , Embarazo , Síndrome
17.
JAMA Neurol ; 79(4): 405-413, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254387

RESUMEN

IMPORTANCE: Infants with hypotonia can present with a variety of potentially severe clinical signs and symptoms and often require invasive testing and multiple procedures. The wide range of clinical presentations and potential etiologies leaves diagnosis and prognosis uncertain, underscoring the need for rapid elucidation of the underlying genetic cause of disease. OBSERVATIONS: The clinical application of exome sequencing or genome sequencing has dramatically improved the timely yield of diagnostic testing for neonatal hypotonia, with diagnostic rates of greater than 50% in academic neonatal intensive care units (NICUs) across Australia, Canada, the UK, and the US, which compose the International Precision Child Health Partnership (IPCHiP). A total of 74% (17 of 23) of patients had a change in clinical care in response to genetic diagnosis, including 2 patients who received targeted therapy. This narrative review discusses the common causes of neonatal hypotonia, the relative benefits and limitations of available testing modalities used in NICUs, and hypotonia management recommendations. CONCLUSIONS AND RELEVANCE: This narrative review summarizes the causes of neonatal hypotonia and the benefits of prompt genetic diagnosis, including improved prognostication and identification of targeted treatments which can improve the short-term and long-term outcomes. Institutional resources can vary among different NICUs; as a result, consideration should be given to rule out a small number of relatively unique conditions for which rapid targeted genetic testing is available. Nevertheless, the consensus recommendation is to use rapid genome or exome sequencing as a first-line testing option for NICU patients with unexplained hypotonia. As part of the IPCHiP, this diagnostic experience will be collected in a central database with the goal of advancing knowledge of neonatal hypotonia and improving evidence-based practice.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Hipotonía Muscular , Niño , Consenso , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Estudios Multicéntricos como Asunto , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Secuenciación del Exoma/métodos
18.
Clin Endocrinol (Oxf) ; 97(3): 284-292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35261046

RESUMEN

OBJECTIVE: Silver-Russell syndrome (SRS) causes short stature. Growth hormone (GH) treatment aims to increase adult height. However, data are limited on the long-term outcomes of GH in patients with molecularly confirmed SRS. This study evaluated height, body mass index (BMI) and GH treatment in molecularly confirmed SRS. DESIGN: An observational study with retrospective data collection. PATIENTS: Individuals with molecularly confirmed SRS aged ≥13 years. MEASUREMENTS: Data were collected on height, height gain (change in height standard deviation score [SDS] from childhood to final or near-final height), BMI and gain in BMI (from childhood to adulthood) and previous GH treatment. RESULTS: Seventy-one individuals (40 female) were included. The median age was 22.0 years (range 13.2-69.7). The molecular diagnoses: H19/IGF2:IG-DMR LOM in 80.3% (57/71); upd(7)mat in 16.9% (12/71) and IGF2 mutation in 2.8% (2/71). GH treatment occurred in 77.5% (55/71). Total height gain was greater in GH-treated individuals (median 1.53 SDS vs. 0.53 SDS, p = .007), who were shorter at treatment initiation (-3.46 SDS vs. -2.91 SDS, p = .04) but reached comparable heights to GH-untreated individuals (-2.22 SDS vs. -2.74 SDS, p = .7). In GH-treated individuals, BMI SDS was lower at the most recent assessment (median -1.10 vs. 1.66, p = .002) with lower BMI gain (2.01 vs. 3.58, p = .006) despite similar early BMI SDS to GH-untreated individuals (median -2.65 vs. -2.78, p = .3). CONCLUSIONS: These results support the use of GH in SRS for increasing height SDS. GH treatment was associated with lower adult BMI which may reflect improved metabolic health even following discontinuation of therapy.


Asunto(s)
Estatura , Índice de Masa Corporal , Hormona de Crecimiento Humana , Síndrome de Silver-Russell , Adolescente , Adulto , Anciano , Femenino , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Síndrome de Silver-Russell/tratamiento farmacológico , Adulto Joven
19.
Genet Med ; 24(6): 1261-1273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341651

RESUMEN

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Asunto(s)
Metilación de ADN , Hipogonadismo , Síndrome de Klinefelter , Trastornos del Neurodesarrollo , Factores de Transcripción SOXC , Metilación de ADN/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Factores de Transcripción SOXC/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...