Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 34(2): 286-299, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38479835

RESUMEN

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Asunto(s)
Variación Genética , Sorghum , Sorghum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
2.
J Virol ; 98(1): e0161823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174928

RESUMEN

The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.


Asunto(s)
Evolución Molecular , Flujo Genético , SARS-CoV-2 , Humanos , COVID-19/virología , Nariz/virología , Saliva/virología , SARS-CoV-2/genética , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
3.
Ecol Evol ; 13(10): e10572, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37791294

RESUMEN

Extensive transformation of natural land cover into urbanized areas enhances accumulation of phenotypic differences between animals from urban and nonurban populations, but there is little information on whether these changes, especially in terms of animal behaviour and circadian rhythm, have a genetic basis. The aim of this study was to investigate genetic background of behavioural differences between four pairs of urban and nonurban populations of a common waterbird, the Eurasian coot Fulica atra. For this purpose, we quantified polymorphisms in personality-related candidate genes, previously reported to be associated with avian circadian rhythms and behavioural traits that may be crucial for urban life. We found general associations between landscape urbanization level and polymorphisms in 3'UTR region of CREB1 gene encoding transcriptional factor, which participates in development of cognitive functions and regulation of circadian rhythm. We also found significant differentiation between urban and nonurban populations in the intronic region of CKIɛ gene responsible for regulation of circadian clock. Although we lacked evidence for linkage of this intronic variation with coding polymorphisms, genetic differentiation between urban populations was significantly stronger at CKIɛ intron compared with neutral microsatellite markers, suggesting possible local adaptations of CKIɛ expression regulation to specific urban sites. Our results indicate that behavioural differentiation between urban and nonurban coot populations may be the effect of habitat-specific selective pressure resulting in genetic adaptations to urban environment and supporting the microevolutionary scenario. These adaptations, however, prevailed in non-coding regulatory rather than coding gene regions and showed either general or local patterns, revealing high complexity of associations between behaviour and landscape urbanization in birds.

4.
Microbiol Resour Announc ; 12(10): e0059623, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37772887

RESUMEN

Pacific Biosciences long-read sequencing was used to improve the genome assembly for Lodderomyces elongisporus strain NRRL YB-4239 (ATCC 11503). The new assembly included eight chromosomes that were substantiated by the electrophoretic karyotype. The nuclear genome was 16.1 Mb (37.2% GC) with 5,740 genes predicted.

5.
Microbiol Resour Announc ; 12(6): e0021323, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37227286

RESUMEN

Pacific Biosciences (PacBio) long-read sequencing was used to generate a chromosome-level genome assembly for Yamadazyma tenuis strain ATCC 10573. The assembly featured 7 chromosomes that matched the electrophoretic karyotype and a 26.5-kb circular mitochondrial genome. The nuclear genome was 10.8 Mb, with a GC content of 43%, and 5,340 predicted genes.

6.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108472

RESUMEN

Root-lesion nematodes (genus Pratylenchus) belong to a diverse group of plant-parasitic nematodes (PPN) with a worldwide distribution. Despite being an economically important PPN group of more than 100 species, genome information related to Pratylenchus genus is scarcely available. Here, we report the draft genome assembly of Pratylenchus scribneri generated on the PacBio Sequel IIe System using the ultra-low DNA input HiFi sequencing workflow. The final assembly created using 500 nematodes consisted of 276 decontaminated contigs, with an average contig N50 of 1.72 Mb and an assembled draft genome size of 227.24 Mb consisting of 51,146 predicted protein sequences. The benchmarking universal single-copy ortholog (BUSCO) analysis with 3131 nematode BUSCO groups indicated that 65.4% of the BUSCOs were complete, whereas 24.0%, 41.4%, and 1.8% were single-copy, duplicated, and fragmented, respectively, and 32.8% were missing. The outputs from GenomeScope2 and Smudgeplots converged towards a diploid genome for P. scribneri. The data provided here will facilitate future studies on host plant-nematode interactions and crop protection at the molecular level.


Asunto(s)
Parásitos , Tylenchoidea , Animales , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Genoma , Secuencia de Bases , Tylenchoidea/genética , Parásitos/genética
7.
BMC Genomics ; 24(1): 19, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639634

RESUMEN

BACKGROUND: Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS: A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS: Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.


Asunto(s)
Escarabajos , Insecticidas , Animales , Zea mays/fisiología , Escarabajos/genética , Larva/metabolismo , Poaceae/genética , Insecticidas/metabolismo , Control Biológico de Vectores , Plantas Modificadas Genéticamente/genética , Endotoxinas
8.
Proc Natl Acad Sci U S A ; 119(30): e2205068119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35857876

RESUMEN

Bifidobacterium is a commensal bacterial genus ubiquitous in the human gastrointestinal tract, which is associated with a range of health benefits. The advent of CRISPR-based genome editing technologies provides opportunities to investigate the genetics of important bacteria and transcend the lack of genetic tools in bifidobacteria to study the basis for their health-promoting attributes. Here, we repurpose the endogenous type I-G CRISPR-Cas system and adopt an exogenous CRISPR base editor for genome engineering in B. animalis subsp. lactis, demonstrating that both genomic and epigenetic contexts drive editing outcomes across strains. We reprogrammed the endogenous type I-G system to screen for naturally occurring large deletions up to 27 kb and to generate a 500-bp deletion in tetW to abolish tetracycline resistance. A CRISPR-cytosine base editor was optimized to install C•G-to-T•A amber mutations to resensitize multiple B. lactis strains to tetracycline. Remarkably, we uncovered epigenetic patterns that are distributed unevenly among B. lactis strains, despite their genomic homogeneity, that may contribute to editing efficiency variability. Insights were also expanded to Bifidobacterium longum subsp. infantis to emphasize the broad relevance of these findings. This study highlights the need to develop individualized CRISPR-based genome engineering approaches for distinct bacterial strains and opens avenues for engineering of next generation probiotics.


Asunto(s)
Bifidobacterium , Sistemas CRISPR-Cas , Edición Génica , Probióticos , Bifidobacterium/genética , Edición Génica/métodos , Genoma Bacteriano/genética , Genómica , Humanos
9.
Nat Microbiol ; 7(5): 640-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484231

RESUMEN

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to 'superspreading'. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Carga Viral , Esparcimiento de Virus
10.
Microbiol Resour Announc ; 11(4): e0117621, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35254127

RESUMEN

We report here the complete genome sequences of three Staphylococcus haemolyticus strains isolated from a mouse fibrotic lung tissue and exhibiting proapoptotic activity on human lung alveolar epithelial cells. The genomes were obtained from a combination of Illumina MiSeq and Oxford Nanopore MinION sequencing.

11.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234880

RESUMEN

Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.56 and 1.64 gigabase pairs and between 2.26 and 2.59 Gb, respectively, for the Diabrotica subgroups fucata and virgifera; the Acalymma vittatum genome size was around 1.65 Gb. This result indicated that a substantial increase in genome size occurred in the ancestor of the virgifera group. Further analysis of the fucata group and the virgifera group genome sequencing reads indicated that the genome size difference between the Diabrotica subgroups could be attributed to a higher content of transposable elements, mostly miniature inverted-transposable elements and gypsy-like long terminal repeat retroelements.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Elementos Transponibles de ADN/genética , Tamaño del Genoma , Insectos/genética , Larva , Zea mays/genética
12.
Genome Biol Evol ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026029

RESUMEN

Kangaroo rats in the genus Dipodomys are found in a variety of habitat types in western North America, including deserts, arid and semiarid grasslands, and scrublands. Many Dipodomys species are experiencing strong population declines due to increasing habitat fragmentation, with two species listed as federally endangered in the United States. The precarious state of many Dipodomys populations, including those occupying extreme environments, make species of this genus valuable subjects for studying the impacts of habitat degradation and fragmentation on population genomic patterns and for characterizing the genomic bases of adaptation to harsh conditions. To facilitate exploration of such questions, we assembled and annotated a reference genome for the banner-tailed kangaroo rat (Dipodomys spectabilis) using PacBio HiFi sequencing reads, providing a more contiguous genomic resource than two previously assembled Dipodomys genomes. Using the HiFi data for D. spectabilis and publicly available sequencing data for two other Dipodomys species (Dipodomys ordii and Dipodomys stephensi), we demonstrate the utility of this new assembly for studies of congeners by conducting inference of historic effective population sizes (Ne) and linking these patterns to the species' current extinction risk statuses. The genome assembly presented here will serve as a valuable resource for population and conservation genomic studies of Dipodomys species, comparative genomic research within mammals and rodents, and investigations into genomic adaptation to extreme environments and changing landscapes.


Asunto(s)
Adaptación Fisiológica , Dipodomys , Animales , Dipodomys/genética , Ecosistema , Humanos , Roedores/genética , Análisis de Secuencia de ADN
13.
medRxiv ; 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34282424

RESUMEN

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimate viral reproduction and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome load often peaked days earlier in saliva than in nasal swabs, indicating strong compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of B.1.1.7 and non-B.1.1.7 viruses in nasal swabs were indistinguishable, however B.1.1.7 exhibited a significantly slower pre-peak growth rate in saliva. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.

14.
Genome Res ; 31(7): 1203-1215, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33947700

RESUMEN

In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.

15.
Syst Biol ; 70(4): 719-738, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32979270

RESUMEN

The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and nonparasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and nonparasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.[Illumina; Phthiraptera; Psocoptera; quartet sampling; recoding methods.].


Asunto(s)
Anoplura , Insectos , Animales , Secuencia de Bases , Sesgo , Insectos/genética , Filogenia
16.
Proc Natl Acad Sci U S A ; 117(38): 23960-23969, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900926

RESUMEN

Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.


Asunto(s)
Adaptación Fisiológica/genética , Diapausa/genética , Tephritidae , Transcriptoma/genética , Animales , Drosophila melanogaster/genética , Estudio de Asociación del Genoma Completo , Estaciones del Año , Tephritidae/genética , Tephritidae/crecimiento & desarrollo
17.
Proc Biol Sci ; 287(1921): 20193005, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32070251

RESUMEN

Tinamous host the highest generic diversity of lice of any group of birds, as well as hosting representatives of all four avian feather louse ecomorphs. Although the generic diversity of tinamou feather lice is well documented, few attempts have been made to reconstruct the phylogenetic relationships among these lice. To test whether tinamou feather lice form a monophyletic group as a whole, we used whole-genome sequencing to estimate a higher-level phylogeny of tinamou feather lice, together with a broad diversity of other avian feather louse groups. In total, we analysed sequences from over 1000 genes for 48 genera of avian lice using both concatenated and coalescent approaches to estimate the phylogeny of this diverse group of avian feather lice. Although the body louse ecomorph of tinamou feather lice formed a monophyletic group, they did not strictly form a monophyletic group together with the other three ecomorphs of tinamou feather lice. In particular, a clade comprised of several feather louse genera, mainly from South America, is nested phylogenetically within tinamou lice, which also have their main centre of diversity in South America. These results suggest in situ radiation of these parasites in South America.


Asunto(s)
Paleognatos/parasitología , Animales , Evolución Biológica , Aves/parasitología , Plumas/parasitología , Interacciones Huésped-Parásitos , Phthiraptera , Filogenia , América del Sur
18.
Commun Biol ; 2: 445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815200

RESUMEN

Nearly all lineages of birds host parasitic feather lice. Based on recent phylogenomic studies, the three major lineages of modern birds diverged from each other before the Cretaceous-Paleogene (K-Pg) mass extinction event. In contrast, studies of the phylogeny of feather lice on birds, indicate that these parasites diversified largely after this event. However, these studies were unable to reconstruct the ancestral avian host lineage for feather lice. Here we use genome sequences of a broad diversity of lice to reconstruct a phylogeny based on 1,075 genes. By comparing this louse evolutionary tree to the avian host tree, we show that feather lice began diversifying on the common ancestor of waterfowl and landfowl, then radiated onto other avian lineages by extensive host-switching. Dating analyses and cophylogenetic comparisons revealed that two of three lineages of birds that diverged before the K-Pg boundary acquired their feather lice after this event via host-switching.


Asunto(s)
Aves/parasitología , Extinción Biológica , Interacciones Huésped-Parásitos , Infestaciones por Piojos , Phthiraptera , Animales , Aves/clasificación , Aves/genética , Genoma , Genómica/métodos , Phthiraptera/clasificación , Phthiraptera/genética , Filogenia
19.
Genome Biol Evol ; 11(10): 2767-2773, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553440

RESUMEN

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic resources. We report a draft genome assembly of the wasp Diachasma alloeum (Hymenoptera: Braconidae), a host-specific parasitoid of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae), and a developing model for understanding how ecological speciation can "cascade" across trophic levels. Identification of gene content confirmed the overall quality of the draft genome, and we manually annotated ∼400 genes as part of this study, including those involved in oxidative phosphorylation, chemosensation, and reproduction. Through comparisons to model hymenopterans such as the European honeybee Apis mellifera and parasitoid wasp Nasonia vitripennis, as well as a more closely related braconid parasitoid Microplitis demolitor, we identified a proliferation of transposable elements in the genome, an expansion of chemosensory genes in parasitoid wasps, and the maintenance of several key genes with known roles in sexual reproduction and sex determination. The D. alloeum genome will provide a valuable resource for comparative genomics studies in Hymenoptera as well as specific investigations into the genomic changes associated with ecological speciation and transitions to asexuality.


Asunto(s)
Genoma de los Insectos , Avispas/genética , Animales , Femenino , Genes de Insecto , Especiación Genética , Himenópteros/genética , Masculino , Modelos Biológicos , Reproducción Asexuada/genética , Procesos de Determinación del Sexo
20.
Insect Biochem Mol Biol ; 105: 69-78, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30654011

RESUMEN

We examined the genome of the soybean aphid, Aphis glycines, and an updated genome assembly of the pea aphid, Acyrthosiphon pisum, for members of the three major families of chemoreceptors, the Odorant Receptors (ORs), Gustatory Receptors (GRs) and Ionotropic Receptors (IRs), as well as the Odorant Binding Proteins (OBPs). The soybean aphid has 47 ORs, 61 GRs, 19 IRs, and 10 OBPs, compared with 87 ORs, 78 Grs, 19 IRs, and 18 OBPs in the pea aphid, with variable numbers of pseudogenes in the OR and GR families. Phylogenetic analysis reveals that while all of the IRs are simple orthologs between these two species, the OR, GR, and OBP families in the pea aphid have experienced major expansions of particular gene lineages and fewer losses of gene lineages. This imbalance in birth-and-death of chemosensory genes has led to the larger pea aphid gene repertoire, which might be related to the broader host range of pea aphids versus the specialization of soybean aphids on a single summer host plant. Examination of the expression levels of these chemosensory genes in parthenogenetic and sexual females and males of pea aphids revealed multiple genes that are differentially expressed in sexual females or males and might be involved in reproductive biology. Examination of the soybean aphid genes in parthenogenetic females under multiple stressors revealed multiple genes whose expression levels changed with heat or starvation stress, the latter potentially important in finding new food sources.


Asunto(s)
Áfidos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo , Animales , Áfidos/genética , Pisum sativum , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Glycine max
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...