Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 25(7): 964-8, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25802150

RESUMEN

Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi-only 71 species, all within the ∼ 9,000 fungi of the temperate and tropical Agaricales order-are reported from among ∼ 100,000 described fungal species [6, 7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a byproduct of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature-compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millennia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin "mushrooms," internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans), as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants), at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy, where wind flow is greatly reduced.


Asunto(s)
Ritmo Circadiano/fisiología , Hongos/fisiología , Luminiscencia , Temperatura , Animales , Insectos , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Oxidorreductasas/metabolismo
2.
Photochem Photobiol ; 89(6): 1318-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23845086

RESUMEN

Over the last half decade the study of fungal bioluminescence has regained momentum since the involvement of enzymes has been confirmed after over 40 years of controversy. Since then our laboratory has worked mainly on further characterizing the substances involved in fungal bioluminescence and its mechanism, as well as the development of an ecotoxicological bioluminescent assay with fungi. Previously, we proved the involvement of a NAD(P)H-dependent reductase and a membrane-bound luciferase in a two-step reaction triggered by addition of NAD(P)H and molecular oxygen to generate green light. The fungal luminescent system is also likely shared across all lineages of bioluminescent fungi based on cross-reaction studies. Moreover, fungal bioluminescence is inhibited by the mycelium exposure to toxicants. The change in light emission under optimal and controlled conditions has been used as endpoint in the development of toxicological bioassays. These bioassays are useful to better understand the interactions and effects of hazardous compounds to terrestrial species and to assist the assessment of soil contaminations by biotic or abiotic sources. In this work, we present an overview of the current state of the study of fungal luminescence and the application of bioluminescent fungi as versatile tool in ecotoxicology.


Asunto(s)
Hongos/metabolismo , Luminiscencia , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA