Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 30(2): 113-123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071473

RESUMEN

The structure of an RNA, and even more so its interactions with other RNAs, provide valuable information about its function. Secondary structure-based tools for RNA-RNA interaction predictions provide a quick way to identify possible interaction targets and structures. However, these tools ignore the effect of steric hindrance on the tertiary (3D) structure level, and do not consider whether a suitable folding pathway exists to form the interaction. As a consequence, these tools often predict interactions that are unrealistically long and could be formed (in three dimensions) only by going through highly entangled intermediates. Here, we present a computational pipeline to assess whether a proposed secondary (2D) structure interaction is sterically feasible and reachable along a plausible folding pathway. To this end, we simulate the folding of a series of 3D structures along a given 2D folding path. To avoid the complexity of large-scale atomic resolution simulations, our pipeline uses coarse-grained 3D modeling and breaks up the folding path into small steps, each corresponding to the extension of the interaction by 1 or 2 bp. We apply our pipeline to analyze RNA-RNA interaction formation for three selected RNA-RNA complexes. We find that kissing hairpins, in contrast to interactions in the exterior loop, are difficult to extend and tend to get stuck at an interaction length of 6 bp. Our tool, including source code, documentation, and sample data, is available at www.github.com/irenekb/RRI-3D.


Asunto(s)
Pliegue del ARN , ARN , ARN/química , Conformación de Ácido Nucleico , Estudios de Factibilidad , Programas Informáticos
2.
J Bioinform Comput Biol ; 21(4): 2350016, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37522173

RESUMEN

Most of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows. These averages can be computed efficiently by dynamic programming. Here we revisit the local folding problem, present a concise mathematical formalization that generalizes previous approaches and show that correct Boltzmann samples can be obtained by local stochastic backtracing in McCaskill's algorithms but not from local folding recursions. Corresponding new features are implemented in the ViennaRNA package to improve the support of local folding. Applications include the computation of maximum expected accuracy structures from RNAplfold data and a mutual information measure to quantify the sensitivity of individual sequence positions.


Asunto(s)
Pliegue del ARN , ARN , Conformación de Ácido Nucleico , ARN/química , Algoritmos , ARN no Traducido
3.
Nucleic Acids Res ; 51(9): 4588-4601, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36999609

RESUMEN

Numerous viruses utilize essential long-range RNA-RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA-RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA-RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA-RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5' and 3' terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA-RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA-RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , ARN Viral , Humanos , ARN Viral/química , ARN Largo no Codificante/química
4.
Genes (Basel) ; 9(8)2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30049970

RESUMEN

The telomerase RNA in yeasts is large, usually >1000 nt, and contains functional elements that have been extensively studied experimentally in several disparate species. Nevertheless, they are very difficult to detect by homology-based methods and so far have escaped annotation in the majority of the genomes of Saccharomycotina. This is a consequence of sequences that evolve rapidly at nucleotide level, are subject to large variations in size, and are highly plastic with respect to their secondary structures. Here, we report on a survey that was aimed at closing this gap in RNA annotation. Despite considerable efforts and the combination of a variety of different methods, it was only partially successful. While 27 new telomerase RNAs were identified, we had to restrict our efforts to the subgroup Saccharomycetacea because even this narrow subgroup was diverse enough to require different search models for different phylogenetic subgroups. More distant branches of the Saccharomycotina remain without annotated telomerase RNA.

5.
J Phys Chem A ; 120(27): 4907-14, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26840424

RESUMEN

Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...