Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 118(6): 1316-1329, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27859593

RESUMEN

Since it is known that placental overexpression of the human anti-angiogenic molecule sFlt-1, the main candidate in the progression of preeclampsia, lead to intrauterine growth restriction (IUGR) in mice by lentiviral transduction of mouse blastocysts, we hypothesize that sFlt-1 influence placental morphology and physiology resulting in fetal IUGR. We therefore examined the effect of sFlt-1 on placental morphology and physiology at embryonic day 18.5 with histologic and morphometric analyses, transcript analyses, immunoblotting, and methylation studies. Interestingly, placental overexpression of sFlt-1 leads to IUGR in the fetus and results in lower placental weights. Moreover, we observed altered trophoblast differentiation with reduced expression of IGF2, resulting in a smaller placenta, a smaller labyrinth, and the loss of glycogen cells in the junctional zone. Changes in IGF2 are accompanied by small changes in its DNA methylation, whereas overall DNA methylation is unaffected. In addition, the expression of placental nutrient transporters, such as the glucose diffusion channel Cx26, is decreased. In contrast, the expression of the fatty acid transporter CD36 and the cholesterol transporter ABCA1 is significantly increased. In conclusion, placental sFlt-1 overexpression resulted in a reduction in the differentiation of the spongiotrophoblast into glycogen cells. These findings of a reduced exchange area of the labyrinth and glycogen stores, as well as decreased expression of glucose transporter, could contribute to the intrauterine growth restriction phenotype. All of these factors change the intrauterine availability of nutrients. Thus, we speculate that the alterations triggered by increased anti-angiogenesis strongly affect fetal outcome and programming. J. Cell. Biochem. 118: 1316-1329, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Placenta/patología , Trofoblastos/citología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciación Celular , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Retardo del Crecimiento Fetal/patología , Glucógeno/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
2.
J Clin Invest ; 113(10): 1430-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15146240

RESUMEN

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Asunto(s)
Afecto/fisiología , Canales de Calcio Tipo L/fisiología , Fenómenos Fisiológicos Cardiovasculares , Islotes Pancreáticos/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Afecto/efectos de los fármacos , Animales , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/genética , Dihidropiridinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
3.
Hum Mol Genet ; 13(9): 905-21, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15028668

RESUMEN

We generated a knockout mouse model for guanidinoacetate N-methyltransferase (GAMT) deficiency (MIM 601240), the first discovered human creatine deficiency syndrome, by gene targeting in embryonic stem cells. Disruption of the open reading frame of the murine GAMT gene in the first exon resulted in the elimination of 210 of the 237 amino acids present in mGAMT. The creation of an mGAMT null allele was verified at the genetic, RNA and protein levels. GAMT knockout mice have markedly increased guanidinoacetate (GAA) and reduced creatine and creatinine levels in brain, serum and urine, which are key findings in human GAMT patients. In vivo (31)P magnetic resonance spectroscopy showed high levels of PGAA and reduced levels of creatine phosphate in heart, skeletal muscle and brain. These biochemical alterations were comparable to those found in human GAMT patients and can be attributed to the very similar GAMT expression patterns found by us in human and mouse tissues. We provide evidence that GAMT deficiency in mice causes biochemical adaptations in brain and skeletal muscle. It is associated with increased neonatal mortality, muscular hypotonia, decreased male fertility and a non-leptin-mediated life-long reduction in body weight due to reduced body fat mass. Therefore, GAMT knockout mice are a valuable creatine deficiency model for studying the effects of high-energy phosphate depletion in brain, heart, skeletal muscle and other organs.


Asunto(s)
Peso Corporal/fisiología , Enfermedades Carenciales/metabolismo , Guanidinas/metabolismo , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Animales , Animales Recién Nacidos , Composición Corporal/genética , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Enfermedades Carenciales/genética , Modelos Animales de Enfermedad , Fertilidad/genética , Guanidinoacetato N-Metiltransferasa , Homeostasis/fisiología , Humanos , Técnicas In Vitro , Infertilidad Masculina/genética , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metiltransferasas/genética , Ratones , Ratones Mutantes , Hipotonía Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Contracción Miocárdica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...