Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Br J Haematol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719214

RESUMEN

Biomarkers for cytopenias following CAR T-cell treatment in relapsed/refractory (RR) multiple myeloma (MM) are not completely defined. We prospectively analysed 275 sequential peripheral blood (PB) samples from 58 RRMM patients treated with BCMA-targeted CAR T cells, and then divided them into three groups: (i) baseline (before leukapheresis), (ii) ≤day+30, and (iii) >day+30 after CAR T-cell therapy. We evaluated laboratory data and performed flow cytometry to determine the (CAR) T-cell subsets. Baseline hyperferritinaemia was a risk factor for long-lasting grade ≥3 anaemia (r = 0.47, p < 0.001) and thrombocytopenia (r = 0.44, p = 0.002) after CAR T-cell therapy. Low baseline haemoglobin (Hb) and PLT were associated with long-lasting grade ≥3 anaemia (r = -0.56, p < 0.001) and thrombocytopenia (r = -0.44, p = 0.002) respectively. We observed dynamics of CAR-negative T-cell subsets following CAR T-cell infusion. In the late phase after CAR T-cell therapy (>day+30), CD4Tn frequency correlated with anaemia (r = 0.41, p = 0.0014) and lymphocytopenia was related to frequencies of CD8+ T cells (r = 0.72, p < 0.001) and CD8Teff (r = 0.64, p < 0.001). CD4Tcm frequency was correlated with leucocytopenia (r = -0.49, p < 0.001). In summary, preexisting cytopenias and hyperferritinaemia indicated long duration of grade ≥3 post-CAR T-cell cytopenias. Prolonged cytopenia may be related to immune remodelling with a shift in the CAR-negative T-cell subsets following CAR T-cell therapy.

2.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572568

RESUMEN

Belantamab mafodotin (belantamab) is a first-in-class anti-BCMA antibody-drug conjugate approved for the treatment of triple-class refractory multiple myeloma. It provides a unique therapeutic option for patients ineligible for CAR-T and bispecific antibody therapy, and/or patients progressing on anti-CD38 treatment where CAR-T and bispecifics might be kept in reserve. Wider use of the drug can be challenged by its distinct ocular side effect profile, including corneal microcysts and keratopathy. While dose reduction has been the most effective way to reduce these toxicities, the underlying mechanism of this BCMA off-target effect remains to be characterized. In this study, we provide the first evidence for soluble BCMA (sBCMA) in lacrimal fluid and report on its correlation with tumor burden in myeloma patients. We confirm that corneal cells do not express BCMA, and show that sBCMA-belantamab complexes may rather be internalized by corneal epithelial cells through receptor-ligand independent pinocytosis. Using an hTcEpi corneal cell-line model, we show that the pinocytosis inhibitor EIPA significantly reduces belantamab-specific cell killing. As a proof of concept, we provide detailed patient profiles demonstrating that, after belantamab-induced cell killing, sBCMA is released into circulation, followed by a delayed increase of sBCMA in the tear fluid and subsequent onset of keratopathy. Based on the proposed mechanism, pinocytosis-induced keratopathy can be prevented by lowering the entry of sBCMA into the lacrimal fluid. Future therapeutic concepts may therefore consist of belantamab-free debulking therapy prior to belantamab consolidation and/or concomitant use of gamma-secretase inhibition as currently evaluated for belantamab and nirogacestat in ongoing studies.

3.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199985

RESUMEN

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Asunto(s)
Enfermedad Injerto contra Huésped , Quinasas Asociadas a rho , Humanos , Animales , Ratones , Quinasas Asociadas a rho/genética , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Transducción de Señal , FN-kappa B , Corticoesteroides/farmacología , Corticoesteroides/uso terapéutico
5.
Commun Biol ; 6(1): 1299, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129580

RESUMEN

The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Inmunoterapia/métodos , Linfocitos T , Anticuerpos Monoclonales/uso terapéutico , Receptores de Muerte Celular , Proteína de Dominio de Muerte Asociada a Fas
6.
Ann Hematol ; 102(3): 603-611, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36464695

RESUMEN

The established standard to ensure state-of-the-art cancer treatment is through multidisciplinary tumor boards (TBs), although resource- and time-intensive. In this validation study, the multiple myeloma (MM)-TB was reexamined, aiming to validate our previous (2012-2014) results, now using the TB data from March 2020 to February 2021. We assessed MM-TB protocols, physicians' documentation, patient, disease, remission status, progression-free survival (PFS), and overall survival (OS) as left-truncated survival times. Moreover, TB-adherence, level of evidence according to grade criteria, time requirements, study inclusion rates, and referral satisfaction were determined. Within a 1-year period, 312 discussed patients were documented in 439 TB protocols. Patient and disease characteristics were typical for comprehensive cancer centers. The percentages of patients discussed at initial diagnosis (ID), with disease recurrence or in need of interdisciplinary advice, were 39%, 28%, and 33%, respectively. Reasons for the MM-TB presentation were therapeutic challenges in 80% or staging/ID-defining questions in 20%. The numbers of presentations were mostly one in 73%, two in 20%, and three or more in 7%. The TB adherence rate was 93%. Reasons for non-adherence were related to patients' decisions or challenging inclusion criteria for clinical trials. Additionally, we demonstrate that with the initiation of TBs, that the number of interdisciplinarily discussed patients increased, that TB-questions involve advice on the best treatment, and that levels of compliance and evidence can be as high as ≥ 90%. Advantages of TBs are that they may also improve patients', referrers', and physicians' satisfaction, inclusion into clinical trials, and advance interdisciplinary projects, thereby encouraging cancer specialists to engage in them.


Asunto(s)
Mieloma Múltiple , Recurrencia Local de Neoplasia , Humanos
7.
Cancer Immunol Res ; 10(9): 1055-1068, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759797

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has led to tremendous successes in the treatment of B-cell malignancies. However, a large fraction of treated patients relapse, often with disease expressing reduced levels of the target antigen. Here, we report that exposing CD19+ B-cell acute lymphoblastic leukemia (B-ALL) cells to CD19 CAR T cells reduced CD19 expression within hours. Initially, CD19 CAR T cells caused clustering of CD19 at the T cell-leukemia cell interface followed by CD19 internalization and decreased CD19 surface expression on the B-ALL cells. CD19 expression was then repressed by transcriptional rewiring. Using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing, we demonstrated that a subset of refractory CD19low cells sustained decreased CD19 expression through transcriptional programs of physiologic B-cell activation and germinal center reaction. Inhibiting B-cell activation programs with the Bruton's tyrosine kinase inhibitor ibrutinib increased the cytotoxicity of CD19 CAR T cells without affecting CAR T-cell viability. These results demonstrate transcriptional plasticity as an underlying mechanism of escape from CAR T cells and highlight the importance of combining CAR T-cell therapy with targeted therapies that aim to overcome this plasticity. See related Spotlight by Zhao and Melenhorst, p. 1040.


Asunto(s)
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19/inmunología , Centro Germinal/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología
9.
Leukemia ; 36(4): 1078-1087, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027656

RESUMEN

Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.


Asunto(s)
Ácidos Nucleicos Libres de Células , Mieloma Múltiple , Ácidos Nucleicos Libres de Células/genética , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Insuficiencia del Tratamiento
10.
J Cancer Res Clin Oncol ; 148(5): 1045-1055, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35072775

RESUMEN

PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound. METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions. RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a > fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively. CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Auranofina/farmacología , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Mieloma Múltiple/patología
11.
Nat Cell Biol ; 23(11): 1199-1211, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675390

RESUMEN

While there is extensive evidence for genetic variation as a basis for treatment resistance, other sources of variation result from cellular plasticity. Using multiple myeloma as an example of an incurable lymphoid malignancy, we show how cancer cells modulate lineage restriction, adapt their enhancer usage and employ cell-intrinsic diversity for survival and treatment escape. By using single-cell transcriptome and chromatin accessibility profiling, we show that distinct transcriptional states co-exist in individual cancer cells and that differential transcriptional regulon usage and enhancer rewiring underlie these alternative transcriptional states. We demonstrate that exposure to standard treatment further promotes transcriptional reprogramming and differential enhancer recruitment while simultaneously reducing developmental potential. Importantly, treatment generates a distinct complement of actionable immunotherapy targets, such as CXCR4, which can be exploited to overcome treatment resistance. Our studies therefore delineate how to transform the cellular plasticity that underlies drug resistance into immuno-oncologic therapeutic opportunities.


Asunto(s)
Antineoplásicos/farmacología , Reprogramación Celular , Resistencia a Antineoplásicos/genética , Inmunoterapia , Mieloma Múltiple/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Transcripción Genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Linaje de la Célula , Plasticidad de la Célula , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transcriptoma
12.
Front Oncol ; 11: 708231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485145

RESUMEN

OBJECTIVE: In clinical trials (CTs), the assessment of minimal residual disease (MRD) has proven to have prognostic value for multiple myeloma (MM) patients. Multiparameter flow cytometry (MFC) and next-generation sequencing are currently used in CTs as effective tools for outcome prediction. We have previously described 6- and 8-color MFC panels with and without kappa/lambda, which were equally reliable in detecting aberrant plasma cells (aPC) in myeloma bone marrow (BM) specimens. This follow-up study a) established a highly sensitive single-tube 10-color MFC panel for MRD detection in myeloma samples carrying different disease burden (monoclonal gammopathy of unknown significance (MGUS), smoldering multiple myeloma (SMM), MM), b) evaluated additional, rarely used markers included in this panel, and c) assessed MRD levels and the predictive value in apheresis vs. BM samples of MM patients undergoing autologous stem cell transplantation (ASCT). METHODS + RESULTS: The 10-color MFC was performed in BM and apheresis samples of 128 MM and pre-MM (MGUS/SMM) patients. The markers CD28, CD200, CD19, and CD117 underwent closer examination. The analysis revealed distinct differences in these antigens between MM, MGUS/SMM, and patients under treatment. In apheresis samples, the 10-color panel determined MRD negativity in 44% of patients. Absence of aPC in apheresis corresponded with disease burden, cytogenetics, and response to induction. It also determined MRD negativity in BM samples after ASCT and was associated with improved progression-free survival. CONCLUSION: These results highlight the significance of the evaluation of both BM and apheresis samples with a novel highly sensitive 10-color MFC panel.

13.
Clin Cancer Res ; 27(23): 6432-6444, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518309

RESUMEN

PURPOSE: Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using BRAF-mutated myeloma as a model for resistance to precision medicine we investigated if BRAF-mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment. EXPERIMENTAL DESIGN: Full-length single-cell RNA (scRNA) sequencing (scRNA-seq) was conducted on 3 patients with BRAF-mutated myeloma and 1 healthy donor. We sequenced 1,495 cells before, after 1 week, and at clinical relapse to BRAF/MEK inhibitor treatment. We developed an in vitro model of dabrafenib resistance using genetically homogeneous single-cell clones from two cell lines with established BRAF mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq). Mitochondrial metabolism was characterized by metabolic flux analysis. RESULTS: Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in patients with myeloma and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells. CONCLUSIONS: This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation, and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities.


Asunto(s)
Melanoma , Mieloma Múltiple , Resistencia a Antineoplásicos , Humanos , Melanoma/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Análisis de la Célula Individual
15.
Best Pract Res Clin Haematol ; 33(1): 101146, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32139012

RESUMEN

Over the past years, the emergence of liquid biopsy technologies has dramatically expanded our ability to assess multiple myeloma without the need for invasive sampling. Interrogation of cell-free DNA from the peripheral blood recapitulates the mutational landscape at excellent concordance with matching bone marrow aspirates. It can quantify disease burden and identify previously undetected resistance mechanisms which may inform clinical management in real-time. The convenience of sample acquisition and storage provides strong procedural benefits over currently available testing. Further investigations will have to define the role of cell-free DNA as a diagnostic measure by determining clinically relevant tumor thresholds in comparison to existing routine parameters. This review presents an overview of currently available assays and discusses the clinical value, potential and limitations of cell-free DNA technologies for the assessment of this challenging disease.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Genoma Humano , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Mutación , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , GTP Fosfohidrolasas/sangre , GTP Fosfohidrolasas/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida/métodos , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Neoplasia Residual , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Proteínas Proto-Oncogénicas B-raf/sangre , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/sangre , Proteínas Proto-Oncogénicas p21(ras)/genética , Recurrencia , Proteína p53 Supresora de Tumor/sangre , Proteína p53 Supresora de Tumor/genética
16.
Clin Adv Hematol Oncol ; 18(11): 736-748, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33406065

RESUMEN

Despite continued and considerable progress following the introduction of proteasome inhibitors and immunomodulatory agents, multiple myeloma (MM) remains an incurable disease, and new therapeutic strategies are urgently needed. Monoclonal antibodies represent a well-established targeted approach to the treatment of MM, with selective killing properties and limited off-target toxicity. Since their approval, the anti-CD38 agent daratumumab, the anti-SLAMF7 agent elotuzumab, and most recently the anti-CD38 agent isatuximab have led to pivotal improvements in the treatment of double-refractory MM; currently, they are on their way to becoming integral parts in the up-front care of patients who have newly diagnosed MM, with daratumumab already approved in this setting. Several other antibody-based strategies are undergoing clinical assessment in MM. Although the investigation of checkpoint inhibitors in MM has been halted, bispecific T-cell engagers and especially antibody-drug conjugates demonstrate encouraging efficacy and manageable toxicity in triple class-refractory MM. The accelerated approval of belantamab mafodotin represents an important milestone in antibody development; its ability to target B-cell maturation antigen (BCMA) in advanced disease is now established. Here, we present an overview of the currently available monoclonal antibody treatments in MM and discuss the clinical value, significant potential, and possible limitations of these immunotherapeutic approaches to driving deeper responses and achieving longer overall survival among patients with a challenging disease.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/inmunología , Antineoplásicos Inmunológicos/inmunología , Antígeno de Maduración de Linfocitos B/antagonistas & inhibidores , Antígeno de Maduración de Linfocitos B/inmunología , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/inmunología , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/antagonistas & inhibidores , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología
17.
J Cancer Res Clin Oncol ; 146(2): 503-514, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31745703

RESUMEN

PURPOSE: Fusion genes can be therapeutically relevant if they result in constitutive activation of oncogenes or repression of tumor suppressors. However, the prevalence and role of fusion genes in female cancers remain largely unexplored. Here, we investigate the fusion gene landscape in triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC), two subtypes of female cancers with high molecular similarity but limited treatment options at present. METHODS: RNA-seq was utilized to identify fusion genes in a cohort of 18 TNBC and HGSOC patients treated with the PI3K inhibitor buparlisib and the PARP inhibitor olaparib in a phase I clinical trial (NCT01623349). Differential gene expression analysis was performed to assess the function of fusion genes in silico. Finally, these findings were correlated with the reported clinical outcomes. RESULTS: A total of 156 fusion genes was detected, whereof 44/156 (28%) events occurred in more than one patient. Low recurrence across samples indicated that the majority of fusion genes were private passenger events. The long non-coding RNA MALAT1 was involved in 97/156 (62%) fusion genes, followed in prevalence by MUC16, FOXP1, WWOX and XIST. Gene expression of FOXP1 was significantly elevated in patients with vs. without FOXP1 fusion (P= 0.02). From a clinical perspective, FOXP1 fusions were associated with a favorable overall survival. CONCLUSIONS: In summary, this study provides the first characterization of fusion genes in a cohort of TNBC and HGSOC patients. An improved mechanistic understanding of fusion genes will support the future identification of innovative therapeutic approaches for these challenging diseases.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Fusión Génica , Neoplasias Ováricas/genética , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Aminopiridinas/administración & dosificación , Aminopiridinas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ensayos Clínicos Fase I como Asunto , Cistadenocarcinoma Seroso/tratamiento farmacológico , Femenino , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Morfolinas/administración & dosificación , Morfolinas/efectos adversos , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/administración & dosificación , Ftalazinas/efectos adversos , Piperazinas/administración & dosificación , Piperazinas/efectos adversos , RNA-Seq/métodos , Proteínas Represoras/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
Hemodial Int ; 23(2): E59-E64, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30548910

RESUMEN

Despite substantial improvements following the introduction of novel agents and antibodies, amyloid light-chain (AL)-amyloidosis still carries a grim prognosis. Here, we report on the case of a severely frail 86-year-old patient suffering from monoclonal gammopathy of renal significance (MGRS)-associated AL-amyloidosis with a diuretic-refractory nephrotic syndrome. In this patient, treatment with bortezomib-dexamethasone effectively induced a serological response, but was unfortunately poorly tolerated and failed to promote renal recovery fast enough to prevent secondary complications. Facing ongoing nephrotic syndrome, we performed unilateral kidney embolization and observed a substantial improvement of hypoalbuminemia accompanied by a significant gain in overall quality of life despite the necessity for thrice weekly dialysis. It can be concluded that systemic drugs in MGRS typically do not lead to instantaneous organ recovery but may initially rather be associated with substantial treatment-related morbidity. In this setting, unilateral renal artery embolization is effective to treat nephrotic syndrome and its secondary complications. The risk of potentially adverse effects, including post-embolization syndrome, can be minimized by unilateral embolization, still noting that also one-sided renal ablation has to be balanced against the requirement for life-long renal replacement therapy. Prospective controlled trials in a more comprehensive cohort will be needed to estimate the overall benefit of kidney embolization relative to novel agent therapies in frail patients with MGRS-related AL-amyloidosis.


Asunto(s)
Amiloidosis/cirugía , Embolización Terapéutica/métodos , Riñón/cirugía , Anciano de 80 o más Años , Amiloidosis/complicaciones , Femenino , Humanos , Riñón/patología , Estudios Prospectivos
19.
Semin Hematol ; 55(1): 33-37, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29759150

RESUMEN

The presence or absence of minimal residual disease (MRD) in patients with multiple myeloma (MM) has emerged as a useful marker to determine the depth of remission. MRD negativity as an endpoint has been shown to be associated with improved progression-free survival in many studies. MRD detection is therefore part of numerous clinical trial protocols for MM. At the present time, two methodologies are most widely accepted for MRD detection: (1) multicolor flow cytometry and (2) next-generation sequencing-based clonotype detection. While both of those methodologies enable accurate quantification of MRD in the bone marrow (BM), with sensitivity as low as 10-5 to 10-6, there are several limitations to these methods. First, these approaches reveal the presence or absence of MRD but provide limited molecular information about MM. More comprehensive characterization of MM cells at the MRD stage may identify molecular mechanisms of drug resistance. Second, MRD detection in the BM is typically performed at one time point only, but more frequent detection may define the duration of the MRD status and thus refine its prognostic value. Third, less-invasive approaches that avoid the discomfort and risk associated with BM biopsy would be highly desirable, especially in elderly or frail patients. "Liquid biopsy" for the detection and characterization of circulating MM cells may address these issues. Although MRD detection in the peripheral blood at the same sensitivity as in the BM may be challenging, the identification of patients who do not achieve MRD negativity might reduce the need for BM biopsies. Here, we give an overview of approaches that have been described to detect and characterize MM cells when they occur at very low frequencies in the peripheral blood or in the BM, emphasizing recently described next-generation sequencing approaches for more comprehensive characterization of circulating MM cells.


Asunto(s)
Citometría de Flujo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mieloma Múltiple/diagnóstico , Neoplasia Residual/diagnóstico , Humanos , Mieloma Múltiple/patología , Neoplasia Residual/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...