Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 2555, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297017

RESUMEN

The cardiac muscle consists of individual cardiomyocytes that are mechanically linked by desmosomes. Desmosomal adhesion is mediated by densely packed and organized cadherins which, in presence of Ca2+, stretch out their extracellular domains (EC) and dimerize with opposing binding partners by exchanging an N-terminal tryptophan. The strand-swap binding motif of cardiac cadherins like desmocollin 2 (Dsc2) (and desmoglein2 alike) is highly specific but of low affinity with average bond lifetimes in the range of approximately 0.3 s. Notably, despite this comparatively weak interaction, desmosomes mediate a stable, tensile-resistant bond. In addition, force mediated dissociation of strand-swap dimers exhibit a reduced bond lifetime as external forces increase (slip bond). Using atomic force microscopy based single molecule force spectroscopy (AFM-SMFS), we demonstrate that Dsc2 has two further binding modes that, in addition to strand-swap dimers, most likely play a significant role in the integrity of the cardiac muscle. At short interaction times, the Dsc2 monomers associate only loosely, as can be seen from short-lived force-independent bonds. These ideal bonds are a precursor state and probably stabilize the formation of the self-inhibiting strand-swap dimer. The addition of tryptophan in the measurement buffer acts as a competitive inhibitor, preventing the N-terminal strand exchange. Here, Dsc2 dimerizes as X-dimer which clearly shows a tri-phasic slip-catch-slip type of dissociation. Within the force-mediated transition (catch) regime, Dsc2 dimers switch between a rather brittle low force and a strengthened high force adhesion state. As a result, we can assume that desmosomal adhesion is mediated not only by strand-swap dimers (slip) but also by their precursor states (ideal bond) and force-activated X-dimers (catch bond).


Asunto(s)
Cadherinas , Triptófano , Unión Proteica , Triptófano/metabolismo , Cadherinas/metabolismo , Dimerización , Fenómenos Físicos , Adhesión Celular/fisiología
2.
Front Cardiovasc Med ; 10: 1127261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273868

RESUMEN

Background: Arrhythmogenic cardiomyopathy can be caused by genetic variants in desmosomal cadherins. Since cardiac desmosomal cadherins are crucial for cell-cell-adhesion, their correct localization at the plasma membrane is essential. Methods: Nine desmocollin-2 variants at five positions from various public genetic databases (p.D30N, p.V52A/I, p.G77V/D/S, p.V79G, p.I96V/T) and three additional conserved positions (p.C32, p.C57, p.F71) within the prodomain were investigated in vitro using confocal microscopy. Model variants (p.C32A/S, p.V52G/L, p.C57A/S, p.F71Y/A/S, p.V79A/I/L, p.I96l/A) were generated to investigate the impact of specific amino acids. Results: We revealed that all analyzed positions in the prodomain are critical for the intracellular transport. However, the variants p.D30N, p.V52A/I and p.I96V listed in genetic databases do not disturb the intracellular transport revealing that the loss of these canonical sequences may be compensated. Conclusion: As disease-related homozygous truncating desmocollin-2 variants lacking the transmembrane domain are not localized at the plasma membrane, we predict that some of the investigated prodomain variants may be relevant in the context of arrhythmogenic cardiomyopathy due to disturbed intracellular transport.

3.
J Nanobiotechnology ; 21(1): 26, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691056

RESUMEN

Dinuclear copper complexes have been designed for molecular recognition in order to selectively bind to two neighboring phosphate moieties in the backbone of double strand DNA. Associated biophysical, biochemical and cytotoxic effects on DNA were investigated in previous works, where atomic force microscopy (AFM) in ambient conditions turned out to be a particular valuable asset, since the complexes influence the macromechanical properties and configurations of the strands. To investigate and scrutinize these effects in more depth from a structural point of view, cutting-edge preparation methods and scanning force microscopy under ultra-high vacuum (UHV) conditions were employed to yield submolecular resolution images. DNA strand mechanics and interactions could be resolved on the single base pair level, including the amplified formation of melting bubbles. Even the interaction of singular complex molecules could be observed. To better assess the results, the appearance of treated DNA is also compared to the behavior of untreated DNA in UHV on different substrates. Finally, we present data from a statistical simulation reasoning about the nanomechanics of strand dissociation. This sort of quantitative experimental insights paralleled by statistical simulations impressively shade light on the rationale for strand dissociations of this novel DNA interaction process, that is an important nanomechanistic key and novel approach for the development of new chemotherapeutic agents.


Asunto(s)
ADN , Desnaturalización de Ácido Nucleico , ADN/química , Emparejamiento Base , Microscopía de Fuerza Atómica/métodos
4.
Biomacromolecules ; 23(11): 4493-4503, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36279551

RESUMEN

Xanthan gum is a polysaccharide that is widely used as a thickening agent in numerous food, cosmetic, and technical applications. Therefore, the knowledge of the molecular interplay that builds up and stabilizes water-binding networks is crucial for the optimization of xanthan thickening performance. Using atomic force microscopy, rheometry, and inductively coupled plasma optical emission spectroscopy, we show a clear correlation between xanthan thickening properties and the ability to form characteristic secondary structures as well as the valence and amount of cations coordinated at the polysaccharide side chain. Based on these findings and the Debye-Hückel theory, we derive an ion-interaction model in which divalent cations mediate bridging of adjacent single polymer strands due to chelate-like coordination building stable secondary structures. We furthermore demonstrate in a cation exchange assay that xanthan secondary structures can be modified in a directed and reversible manner, which, in turn, alters its thickening properties.


Asunto(s)
Polímeros , Polisacáridos Bacterianos , Viscosidad , Polisacáridos Bacterianos/química , Microscopía de Fuerza Atómica , Polímeros/química
5.
J Biotechnol ; 347: 9-17, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35151713

RESUMEN

Xanthomonas campestris strains are used world-wide for the production of the industrially important exopolysaccharide xanthan. The high industrial relevance of xanthan can be explained by its extraordinary qualities as rheological control agent in aqueous systems and by its stabilizing properties in suspensions and emulsions. The phytopathogen Xanthomonas campestris is a motile bacterium with one polar flagellum. The flagellum is a cost intensive structure, in terms of energy and building block consumption. Based on the assumption that inhibition of the flagellar biosynthesis and related proton driven motility might be beneficial for the xanthan production in Xcc, two genes (fliC and fliM) were mutated to inhibit the motility. Both mutants Xcc JBL007 fliC- and Xcc JBL007 fliM- showed an increased xanthan production. Remarkably, the produced xanthan from both mutants showed enhanced rheological properties. While the chemical composition of the produced xanthan of the initial and both mutant strains did not change, notable differences in persistence length could be measured via atomic force microscopy. Results presented in this study demonstrate the possibility to further improve the xanthan production by Xcc through rational strain design.


Asunto(s)
Xanthomonas campestris , Microscopía de Fuerza Atómica , Polisacáridos Bacterianos , Viscosidad , Xanthomonas campestris/genética
6.
Can J Cardiol ; 37(6): 857-866, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33290826

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a heritable myocardial disorder and a major cause of sudden cardiac death. It is typically caused by mutations in desmosomal genes. Desmin gene (DES) variants have been previously reported in AC but with insufficient evidence to support their pathogenicity. METHODS: We aimed to assess a large AC patient cohort for DES mutations and describe a unique phenotype associated with a recurring variant in three families. A cohort of 138 probands with a diagnosis of AC and no identifiable desmosomal gene mutations were prospectively screened by whole-exome sequencing. RESULTS: A single DES variant (p.Leu115Ile, c.343C>A) was identified in 3 index patients (2%). We assessed the clinical phenotypes within their families and confirmed cosegregation. One carrier required heart transplantation, 2 died suddenly, and 1 died of noncardiac causes. All cases had right- and left-ventricular (LV) involvement. LV late gadolinium enhancement was present in all, and circumferential subepicardial distribution was confirmed on histology. A significant burden of ventricular arrhythmias was noted. Desmin aggregates were not observed macroscopically, but analysis of the desmin filament formation in transfected cardiomyocytes derived from induced pluripotent stem cells, and SW13 cells revealed cytoplasmic aggregation of mutant desmin. Atomic force microscopy revealed that the mutant form accumulates into short protofilaments and small fibrous aggregates. CONCLUSIONS: DES p.Leu115Ile leads to disruption of the desmin filament network and causes a malignant biventricular form of AC, characterized by LV dysfunction and a circumferential subepicardial distribution of myocardial fibrosis.


Asunto(s)
Cardiomiopatías , Desmina/genética , Fibrosis Endomiocárdica , Disfunción Ventricular Izquierda , Disfunción Ventricular Derecha , Fibrilación Ventricular , Cardiomiopatías/complicaciones , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Cardiomiopatías/terapia , Muerte Súbita Cardíaca , Fibrosis Endomiocárdica/diagnóstico , Fibrosis Endomiocárdica/etiología , Femenino , Estado Funcional , Tamización de Portadores Genéticos/métodos , Pruebas de Función Cardíaca/métodos , Humanos , Masculino , Persona de Mediana Edad , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación Missense , Miocardio/patología , Reino Unido , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Derecha/diagnóstico , Disfunción Ventricular Derecha/etiología , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/etiología
7.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970646

RESUMEN

A novel technique to study protein synthesis is proposed that uses magnetic nanoparticles in combination with microfluidic devices to achieve new insights into translational regulation. Cellular protein synthesis is an energy-demanding process which is tightly controlled and is dependent on environmental and developmental requirements. Processivity and regulation of protein synthesis as part of the posttranslational nano-machinery has now moved back into the focus of cell biology, since it became apparent that multiple mechanisms are in place for fine-tuning of translation and conditional selection of transcripts. Recent methodological developments, such as ribosome foot printing, propel current research. Here we propose a strategy to open up a new field of labelling, separation, and analysis of specific polysomes using superparamagnetic particles following pharmacological arrest of translation during cell lysis and subsequent analysis. Translation occurs in polysomes, which are assemblies of specific transcripts, associated ribosomes, nascent polypeptides, and other factors. This supramolecular structure allows for unique approaches to selection of polysomes by targeting the specific transcript, ribosomes, or nascent polypeptides. Once labeled with functionalized superparamagnetic particles, such assemblies can be separated in microfluidic devices or magnetic ratchets and quantified. Insights into the dynamics of translation is obtained through quantifying large numbers of ribosomes along different locations of the polysome. Thus, an entire new concept for in vitro, ex vivo, and eventually single cell analysis will be realized and will allow for magnetic tracking of protein synthesis.

8.
Sci Rep ; 8(1): 16849, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442949

RESUMEN

In non-covalent biological adhesion, molecular bonds commonly exhibit a monotonously decreasing life time when subjected to tensile forces (slip bonds). In contrast, catch bonds behave counter intuitively, as they show an increased life time within a certain force interval. To date only a hand full of catch bond displaying systems have been identified. In order to unveil their nature, a number of structural and phenomenological models have been introduced. Regardless of the individual causes for catch bond behavior, it appears evident that the free energy landscapes of these interactions bear more than one binding state. Here, we investigated the catch bond interaction between the hydrophilic domain of the human cell surface sulfatase 1 (Sulf1HD) and its physiological substrate heparan sulfate (HS) by atomic force microscopy based single molecule force spectroscopy (AFM-SMFS). Using Jarzynski's equality, we estimated the associated Gibbs free energy and provide a comprehensive thermodynamic and kinetic characterization of Sulf1HD/HS interaction. Interestingly, the binding potential landscape exhibits two distinct potential wells which confirms the recently suggested two state binding. Even though structural data of Sulf1HD is lacking, our results allow to draft a detailed picture of the directed and processive desulfation of HS.


Asunto(s)
Modelos Moleculares , Sulfatasas/metabolismo , Disacáridos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Termodinámica
9.
Mol Genet Genomic Med ; 6(2): 288-293, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29274115

RESUMEN

BACKGROUND: DES mutations cause different cardiac and skeletal myopathies. Most of them are missense mutations. METHODS: Using a next-generation sequencing cardiac 174 gene panel, we identified a novel heterozygous in-frame indel mutation (DES-c.493_520del28insGCGT, p.Q165_A174delinsAS) in a Caucasian patient with cardiomyopathy in combination with atrioventricular block and skeletal myopathy. This indel mutation is located in the coding region of the first exon. Family anamnesis revealed a history of sudden cardiac death. We performed cell transfection experiments and in vitro assembly experiments to prove the pathogenicity of this novel DES indel mutation. RESULTS: These experiments revealed a severe filament formation defect of mutant desmin supporting the pathogenicity. In addition, we labeled a skeletal muscle biopsy from the mutation carrier revealing cytoplasmic desmin positive protein aggregates. In summary, we identified and functionally characterized a pathogenic DES indel mutation causing cardiac and skeletal myopathy. CONCLUSION: Our study has relevance for the clinical and genetic interpretation of further DES indel mutations causing cardiac or skeletal myopathies and might be helpful for risk stratification.


Asunto(s)
Cardiomiopatías/genética , Desmina/genética , Adulto , Bloqueo Atrioventricular/genética , Secuencia de Bases/genética , Desmina/metabolismo , Humanos , Mutación INDEL/genética , Filamentos Intermedios/genética , Masculino , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Linaje
10.
Sci Rep ; 7(1): 13791, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062102

RESUMEN

Cadherins are calcium dependent adhesion proteins that establish the intercellular mechanical contact by bridging the gap to adjacent cells. Desmoglein-2 (Dsg2) is a specific cadherin of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene are regarded to cause arrhythmogenic (right ventricular) cardiomyopathy (ARVC) which is a rare but severe heart muscle disease. The molecular pathomechanisms of the vast majority of DSG2 mutations, however, are unknown. Here, we investigated the homophilic binding of wildtype Dsg2 and two mutations which are associated with ARVC. Using single molecule force spectroscopy and applying Jarzynski's equality we determined the kinetics and thermodynamics of Dsg2 homophilic binding. Notably, the free energy landscape of Dsg2 dimerization exposes a high activation barrier which is in line with the proposed strand-swapping binding motif. Although the binding motif is not directly affected by the mutations the binding kinetics differ significantly from the wildtype. Furthermore, we applied a dispase based cell dissociation assay using HT1080 cell lines over expressing Dsg2 wildtype and mutants, respectively. Our molecular and cellular results consistently demonstrate that Dsg2 mutations can heavily affect homophilic Dsg2 interactions. Furthermore, the full thermodynamic and kinetic description of Dsg2 dimerization provides a consistent model of the so far discussed homophilic cadherin binding.


Asunto(s)
Adhesión Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Fibrosarcoma/metabolismo , Mutación , Arritmias Cardíacas/genética , Cardiomiopatías/genética , Desmogleína 2/química , Fibrosarcoma/genética , Fibrosarcoma/patología , Humanos , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Tumorales Cultivadas
11.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2739-2749, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28756274

RESUMEN

BACKGROUND: Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. METHODS: Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. RESULTS: Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. CONCLUSIONS: At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. GENERAL SIGNIFICANCE: In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin.


Asunto(s)
Fenómenos Biofísicos , Cromatina/química , ADN de Cadena Simple/química , Histonas/química , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Histonas/genética , Nucleosomas/química , Nucleosomas/genética , Concentración Osmolar
12.
Eur Biophys J ; 46(6): 561-566, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28251265

RESUMEN

Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.


Asunto(s)
ADN/química , Fenómenos Magnéticos , Fenómenos Mecánicos , Compuestos Orgánicos/química , Espectrometría de Fluorescencia
13.
J Biotechnol ; 257: 2-8, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27919690

RESUMEN

The polysaccharide xanthan which is produced by the γ-proteobacterium Xanthomonas campestris is used as a food thickening agent and rheologic modifier in numerous food, cosmetics and technical applications. Its great commercial importance stimulated biotechnological approaches to optimize the xanthan production. By targeted genetic modification the metabolism of Xanthomonas can be modified in such a way that the xanthan production efficiency and/or the shear-thickening potency is optimized. Using atomic force microscopy (AFM) the secondary structure of single xanthan polymers produced by the wild type Xanthomonas campestris B100 and several genetically modified variations were analyzed. We found a wide variation of characteristic differences between xanthan molecules produced by different strains. The structures ranged from single-stranded coiled polymers to branched xanthan double-strands. These results can help to get a better understanding of the polymerization- and secretion-machinery that are relevant for xanthan synthesis. Furthermore, we demonstrate that the xanthan secondary structure strongly correlates with its viscosifying properties.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Polisacáridos Bacterianos/análisis , Polisacáridos Bacterianos/química , Estructura Molecular , Polimerizacion , Polímeros/análisis , Polímeros/química , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Viscosidad , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
14.
Biophys J ; 111(8): 1604-1611, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760348

RESUMEN

Fluorescent DNA dyes are broadly used in many biotechnological applications for detecting and imaging DNA in cells and gels. Their binding alters the structural and nanomechanical properties of DNA and affects the biological processes that are associated with it. Although interaction modes like intercalation and minor groove binding already have been identified, associated mechanic effects like local elongation, unwinding, and softening of the DNA often remain in question. We used magnetic tweezers to quantitatively investigate the impact of three DNA-binding dyes (YOYO-1, DAPI, and DRAQ5) in a concentration-dependent manner. By extending and overwinding individual, torsionally constrained, nick-free dsDNA molecules, we measured the contour lengths and molecular forces that allow estimation of thermodynamic and nanomechanical binding parameters. Whereas for YOYO-1 and DAPI the binding mechanisms could be assigned to bis-intercalation and minor groove binding, respectively, DRAQ5 exhibited both binding modes in a concentration-dependent manner.


Asunto(s)
Benzoxazoles/química , ADN/química , ADN/metabolismo , Colorantes Fluorescentes/química , Fenómenos Magnéticos , Fenómenos Mecánicos , Nanotecnología , Compuestos de Quinolinio/química , Fenómenos Biomecánicos , Tampones (Química) , Elasticidad
15.
J Mol Cell Cardiol ; 91: 207-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724190

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) could be caused by mutations in more than 40 different genes. However, the pathogenic impact of specific mutations is in most cases unknown complicating the genetic counseling of affected families. Therefore, functional studies could contribute to distinguish pathogenic mutations and benign variants. Here, we present a novel heterozygous DES missense variant (c.407C>T; p.L136P) identified by next generation sequencing in a DCM patient. DES encodes the cardiac intermediate filament protein desmin, which has important functions in mechanical stabilization and linkage of the cell structures in cardiomyocytes. METHODS AND RESULTS: Cell transfection experiments and assembly assays of recombinant desmin in combination with atomic force microscopy were used to investigate the impact of this novel DES variant on filament formation. Desmin-p.L136P forms cytoplasmic aggregates indicating a severe intrinsic filament assembly defect of this mutant. Co-transfection experiments of wild-type and mutant desmin conjugated to different fluorescence proteins revealed a dominant affect of this mutant on filament assembly. These experiments were complemented by apertureless scanning near-field optical microscopy. CONCLUSION: In vitro analysis demonstrated that desmin-p.L136P is unable to form regular filaments and accumulate instead within the cytoplasm. Therefore, we classified DES-p.L136P as a likely pathogenic mutation. In conclusion, the functional characterization of DES-p.L136P might have relevance for the genetic counseling of affected families with similar DES mutations and could contribute to distinguish pathogenic mutations from benign rare variants.


Asunto(s)
Cardiomiopatía Dilatada/genética , Desmina/genética , Filamentos Intermedios/metabolismo , Mutación Missense , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Desmina/química , Desmina/metabolismo , Desmosomas/metabolismo , Desmosomas/ultraestructura , Femenino , Expresión Génica , Genes Dominantes , Asesoramiento Genético , Células HEK293 , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filamentos Intermedios/ultraestructura , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Linaje , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
16.
Biophys J ; 108(7): 1709-1717, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863062

RESUMEN

In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display catch bond properties. Upon investigating the specific interaction between the unique hydrophilic domain (HD) of the human cell-surface sulfatase Sulf1 against its physiological glycosaminoglycan (GAG) target heparan sulfate (HS) by single molecule force spectroscopy (SMFS), we found clear evidence of catch bond behavior in this system. The HD, ∼320 amino acids long with dominant positive charge, and its interaction with sulfated GAG-polymers were quantitatively investigated using atomic force microscopy (AFM) based force clamp spectroscopy (FCS) and dynamic force spectroscopy (DFS). In FCS experiments, we found that the catch bond character of HD against GAGs could be attributed to the GAG 6-O-sulfation site whereas only slip bond interaction can be observed in a GAG system where this site is explicitly lacking. We interpreted the binding data within the theoretical framework of a two state two path model, where two slip bonds are coupled forming a double-well interaction potential with an energy difference of ΔE ≈ 9 kBT and a compliance length of Δx ≈ 3.2 nm. Additional DFS experiments support this assumption and allow identification of these two coupled slip-bond states that behave consistently within the Kramers-Bell-Evans model of force-mediated dissociation.


Asunto(s)
Heparitina Sulfato/química , Sulfotransferasas/química , Heparitina Sulfato/metabolismo , Humanos , Unión Proteica , Sulfotransferasas/metabolismo
17.
Eur Heart J ; 36(14): 872-81, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24598986

RESUMEN

AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetic condition caused predominantly by mutations within desmosomal genes. The mutation leading to ARVC-5 was recently identified on the island of Newfoundland and caused by the fully penetrant missense mutation p.S358L in TMEM43. Although TMEM43-p.S358L mutation carriers were also found in the USA, Germany, and Denmark, the genetic relationship between North American and European patients and the disease mechanism of this mutation remained to be clarified. METHODS AND RESULTS: We screened 22 unrelated ARVC patients without mutations in desmosomal genes and identified the TMEM43-p.S358L mutation in a German ARVC family. We excluded TMEM43-p.S358L in 22 unrelated patients with dilated cardiomyopathy. The German family shares a common haplotype with those from Newfoundland, USA, and Denmark, suggesting that the mutation originated from a common founder. Examination of 40 control chromosomes revealed an estimated age of 1300-1500 years for the mutation, which proves the European origin of the Newfoundland mutation. Skin fibroblasts from a female and two male mutation carriers were analysed in cell culture using atomic force microscopy and revealed that the cell nuclei exhibit an increased stiffness compared with TMEM43 wild-type controls. CONCLUSION: The German family is not affected by a de novo TMEM43 mutation. It is therefore expected that an unknown number of European families may be affected by the TMEM43-p.S358L founder mutation. Due to its deleterious clinical phenotype, this mutation should be checked in any case of ARVC-related genotyping. It appears that the increased stiffness of the cell nucleus might be related to the massive loss of cardiomyocytes, which is typically found in ventricles of ARVC hearts.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Núcleo Celular/fisiología , Proteínas de la Membrana/genética , Mutación Missense/genética , Adulto , Anciano , Displasia Ventricular Derecha Arritmogénica/etnología , Estudios de Cohortes , Femenino , Fibroblastos/fisiología , Efecto Fundador , Alemania/etnología , Haplotipos , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Terranova y Labrador/etnología , Linaje , Piel
18.
Biochemistry ; 52(46): 8177-86, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24199636

RESUMEN

A combined approach based on isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) experiments, circular dichroism spectroscopy (CD), atomic force microscopy (AFM) dynamic force spectroscopy (DFS), and surface plasmon resonance (SPR) was applied to elucidate the mechanism of protein-DNA complex formation and the impact of protein dimerization of the DNA-binding domain of PhoB (PhoB(DBD)). These insights can be translated to related members of the family of winged helix-turn-helix proteins. One central question was the assembly of the trimeric complex formed by two molecules of PhoB(DBD) and two cognate binding sites of a single oligonucleotide. In addition to the native protein WT-PhoB(DBD), semisynthetic covalently linked dimers with different linker lengths were studied. The ITC, SPR, FRET, and CD results indicate a positive cooperative binding mechanism and a decisive contribution of dimerization on the complex stability. Furthermore, an alanine scan was performed and binding of the corresponding point mutants was analyzed by both techniques to discriminate between different binding types involved in the protein-DNA interaction and to compare the information content of the two methods DFS and SPR. In light of the published crystal structure, four types of contribution to the recognition process of the pho box by the protein PhoB(DBD) could be differentiated and quantified. Consequently, it could be shown that investigating the interactions between DNA and proteins with complementary techniques is necessary to fully understand the corresponding recognition process.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Escherichia coli K12 , Proteínas de Escherichia coli/química , Unión Proteica , Factores de Transcripción/química , Secuencia de Bases , Dicroismo Circular , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Secuencias Hélice-Giro-Hélice , Microscopía de Fuerza Atómica , Mutación Puntual , Multimerización de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética
19.
Circ Cardiovasc Genet ; 6(6): 615-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24200904

RESUMEN

BACKGROUND: The intermediate filament protein desmin is encoded by the gene DES and contributes to the mechanical stabilization of the striated muscle sarcomere and cell contacts within the cardiac intercalated disk. DES mutations cause severe skeletal and cardiac muscle diseases with heterogeneous phenotypes. Recently, DES mutations were also found in patients with arrhythmogenic right ventricular cardiomyopathy. Currently, the cellular and molecular pathomechanisms of the DES mutations leading to this disease are not exactly known. METHODS AND RESULTS: We identified the 2 novel variants DES-p.A120D (c.359C>A) and DES-p.H326R (c.977A>G), which were characterized by cell culture experiments and atomic force microscopy. Family analysis indicated a broad spectrum of cardiomyopathies with a striking frequency of arrhythmias and sudden cardiac deaths. The in vitro experiments of desmin-p.A120D reveal a severe intrinsic filament formation defect causing cytoplasmic aggregates in cell lines and of the isolated recombinant protein. Model variants of codon 120 indicated that ionic interactions contribute to this filament formation defect. Ex vivo analysis of ventricular tissue slices revealed a loss of desmin staining within the intercalated disk and severe cytoplasmic aggregate formation, whereas z-band localization was not affected. The functional experiments of desmin-p.H326R did not demonstrate any differences from wild type. CONCLUSIONS: Because of the functional in vivo and in vitro characterization, DES-p.A120D has to be regarded as a pathogenic mutation and DES-p.H326R as a rare variant with unknown significance. Presumably, the loss of the desmin-p. A120D filament localization at the intercalated disk explains its clinical arrhythmogenic potential.


Asunto(s)
Muerte Súbita Cardíaca , Desmina/genética , Filamentos Intermedios/genética , Mutación , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Análisis Mutacional de ADN , Desmina/metabolismo , Desmosomas/metabolismo , Salud de la Familia , Femenino , Células HeLa , Humanos , Filamentos Intermedios/metabolismo , Masculino , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Linaje , Homología de Secuencia de Aminoácido
20.
Beilstein J Nanotechnol ; 4: 510-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062977

RESUMEN

Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...