Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 32(43): e2003439, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32954560

RESUMEN

Molybdenum disulfide (MoS2 ) is a multifunctional material that can be used for various applications. In the single-crystalline form, MoS2 shows superior electronic properties. It is also an exceptionally useful nanomaterial in its polycrystalline form with applications in catalysis, energy storage, water treatment, and gas sensing. Here, the scalable fabrication of longitudinal MoS2 nanostructures, i.e., nanoribbons, and their oxide hybrids with tunable dimensions in a rational and well-reproducible fashion, is reported. The nanoribbons, obtained at different reaction stages, that is, MoO3 , MoS2 /MoO2 hybrid, and MoS2 , are fully characterized. The growth method presented herein has a high yield and is particularly robust. The MoS2 nanoribbons can readily be removed from its substrate and dispersed in solution. It is shown that functionalized MoS2 nanoribbons can be manipulated in solution and assembled in controlled patterns and directly on microelectrodes with UV-click-chemistry. Owing to the high chemical purity and polycrystalline nature, the MoS2 nanostructures demonstrate rapid optoelectronic response to wavelengths from 450 to 750 nm, and successfully remove mercury contaminants from water. The scalable fabrication and manipulation followed by light-directed assembly of MoS2 nanoribbons, and their unique properties, will be inspiring for device fabrication and applications of the transition metal dichalcogenides.

2.
Nano Lett ; 18(12): 7935-7941, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30468387

RESUMEN

Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.


Asunto(s)
Óxido de Aluminio/química , ADN de Cadena Simple/administración & dosificación , Preparaciones de Acción Retardada/química , Oro/química , Nanopartículas del Metal/química , Animales , Células CHO , Cricetulus , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Calefacción , Inyecciones , Luz , Pinzas Ópticas , Temperatura
3.
Adv Mater ; 28(44): 9846-9850, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717081

RESUMEN

Immobilization of colloidal assemblies onto solid supports via a fast UV-triggered click-reaction is achieved. Transient assemblies of microparticles and colloidal materials can be captured and transferred to solid supports. The technique does not require complex reaction conditions, and is compatible with a variety of particle assembly methods.

4.
Sci Adv ; 1(11): e1500501, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26824056

RESUMEN

In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA