Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(11): pgad361, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034093

RESUMEN

A sustainable low-carbon transition via electric vehicles will require a comprehensive understanding of lithium-ion batteries' global supply chain environmental impacts. Here, we analyze the cradle-to-gate energy use and greenhouse gas emissions of current and future nickel-manganese-cobalt and lithium-iron-phosphate battery technologies. We consider existing battery supply chains and future electricity grid decarbonization prospects for countries involved in material mining and battery production. Currently, around two-thirds of the total global emissions associated with battery production are highly concentrated in three countries as follows: China (45%), Indonesia (13%), and Australia (9%). On a unit basis, projected electricity grid decarbonization could reduce emissions of future battery production by up to 38% by 2050. An aggressive electric vehicle uptake scenario could result in cumulative emissions of 8.1 GtCO2eq by 2050 due to the manufacturing of nickel-based chemistries. However, a switch to lithium iron phosphate-based chemistry could enable emission savings of about 1.5 GtCO2eq. Secondary materials, via recycling, can help reduce primary supply requirements and alleviate the environmental burdens associated with the extraction and processing of materials from primary sources, where direct recycling offers the lowest impacts, followed by hydrometallurgical and pyrometallurgical, reducing greenhouse gas emissions by 61, 51, and 17%, respectively. This study can inform global and regional clean energy strategies to boost technology innovations, decarbonize the electricity grid, and optimize the global supply chain toward a net-zero future.

2.
ACS Appl Mater Interfaces ; 12(16): 18617-18624, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32223189

RESUMEN

Catalytic decomposition of the hydrogen-rich hydrazine monohydrate (N2H4·H2O) represents a promising hydrogen storage/production technology. A rational design of advanced N2H4·H2O decomposition catalysts requires an overall consideration of intrinsic activity, number, and accessibility of active sites. We herein report the synthesis of a hierarchically nanostructured NiPt/N-doped carbon catalyst using a three-step method that can simultaneously address these issues. The chelation of metal precursors with polydopamine and thermolysis of the resulting complexes under reductive atmosphere resulted in a concurrent formation of N-doped carbon substrate and catalytically active NiPt alloy nanoparticles. Thanks to the usage of a silica nanosphere template and dopamine precursor, the N-doped carbon substrate possesses a hierarchical macroporous-mesoporous architecture. This, together with the uniform dispersion of tiny NiPt nanoparticles on the carbon substrate, offers opportunity for creating abundant and accessible active sites. Benefiting from these favorable attributes, the NiPt/N-doped carbon catalyst enables a complete and rapid hydrogen production from alkaline N2H4·H2O solution with a rate of 1602 h-1 at 50 °C, which outperforms most existing catalysts for N2H4·H2O decomposition.

3.
J Phys Chem Lett ; 11(1): 40-47, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31814416

RESUMEN

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.

4.
Phys Chem Chem Phys ; 15(29): 12139-46, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23674125

RESUMEN

LiH is a highly stable light metal hydride with a hydrogen capacity of 12.5 wt%. However, having a dehydrogenation enthalpy, ΔH(dehy), of 181.2 kJ mol(-1)(H2) and a resultant T(1 bar) of 944 °C, it is not a practical hydride for most hydrogen storage applications. In the work presented here, germanium has been found to dramatically reduce the dehydrogenation temperature for LiH down to just 270 °C. The enthalpy of dehydrogenation was reduced through the formation of lithium germanides. The reaction pathway was identified in this study using in situ powder neutron diffraction, showing the successive formation of more Li-rich germanides, following the series: LiGe, Li4Ge2H, Li9Ge4, and Li7Ge2. The enthalpy of formation for these germanides provides the thermodynamic tuning to reduce the ΔH(dehy) for the system. The 3LiH-Ge system investigated is found to be reversible with a maximum capacity of 3.0 ± 0.1 wt%.

5.
J Biomater Appl ; 28(3): 354-66, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22781920

RESUMEN

Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.


Asunto(s)
Materiales Biocompatibles , Vidrio , Ácido Láctico/metabolismo , Fosfatos/metabolismo , Polímeros/metabolismo , Espectroscopía de Fotoelectrones , Poliésteres , Espectroscopía Infrarroja por Transformada de Fourier , Humectabilidad
6.
J Biomater Appl ; 26(7): 765-89, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21123285

RESUMEN

In this study, bioresorbable phosphate-based glass (PBG) fibers were used to reinforce poly(lactic acid) (PLA). PLA/PBG random mat (RM) and unidirectional (UD) composites were prepared via laminate stacking and compression molding with fiber volume fractions between 14% and 18%, respectively. The percentage of water uptake and mass change for UD composites were higher than the RM composites and unreinforced PLA. The crystallinity of the unreinforced PLA and composites increased during the first few weeks and then a plateau was seen. XRD analysis detected a crystalline peak at 16.6° in the unreinforced PLA sample after 42 days of immersion in phosphate buffer solution (PBS) at 37°C. The initial flexural strength of RM and UD composites was ∼106 and ∼115 MPa, whilst the modulus was ∼6.7 and ∼9 GPa, respectively. After 95 days immersion in PBS at 37°C, the strength decreased to 48 and 52 MPa, respectively as a result of fiber-matrix interface degradation. There was no significant change in flexural modulus for the UD composites, whilst the RM composites saw a decrease of ∼45%. The molecular weight of PLA alone, RM, and UD composites decreased linearly with time during degradation due to chain scission of the matrix. Short fiber pull-out was seen from SEM micrographs for both RM and UD composites.


Asunto(s)
Materiales Biocompatibles/química , Placas Óseas , Vidrio/química , Ácido Láctico/química , Fosfatos/química , Polímeros/química , Cristalización , Ensayo de Materiales , Peso Molecular , Poliésteres
7.
J Am Chem Soc ; 133(34): 13534-8, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21755995

RESUMEN

It is known that the reaction path for the decomposition of LiBH(4):MgH(2) systems is dependent on whether decomposition is performed under vacuum or under a hydrogen pressure (typically 1-5 bar). However, the sensitivity of this multicomponent hydride system to partial pressures of H(2) has not been investigated previously. A combination of in situ powder neutron and X-ray diffraction (deuterides were used for the neutron experiments) have shed light on the effect of low partial pressures of hydrogen on the decomposition of these materials. Different partial pressures have been achieved through the use of different vacuum systems. It was found that all the samples decomposed to form Li-Mg alloys regardless of the vacuum system used or sample stoichiometry of the multicomponent system. However, upon cooling the reaction products, the alloys showed phase instability in all but the highest efficiency pumps (i.e., lowest base pressures), with the alloys reacting to form LiH and Mg. This work has significant impact on the investigation of Li-containing multicomponent systems and the reproducibility of results if different dynamic vacuum conditions are used, as this affects the apparent amount of hydrogen evolved (as determined by ex situ experiments). These results have also helped to explain differences in the reported reversibility of the systems, with Li-rich samples forming a passivating hydride layer, hindering further hydrogenation.

8.
Chem Commun (Camb) ; 47(28): 8001-3, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21674102

RESUMEN

MgH(2) has too high an operating temperature for many hydrogen storage applications. However, MgH(2) ball-milled with Ge leads to a thermodynamic destabilisation of >50 kJ mol(-1)(H(2)). This has dramatically reduced the temperature of dehydrogenation to 130 °C, opening up the potential for Mg-based multicomponent systems as hydrogen stores for a range of applications.

9.
Faraday Discuss ; 151: 133-41; discussion 199-212, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22455066

RESUMEN

Due to the high hydrogen capacity of LiBH4, various strategies have been investigated to improve the hydrogen release properties of LiBH4. Theoretical calculations suggest that doping LiBH4 with F-/CI- anions may generate lattice substitutions (such as the formation of LiBH3F or LiBH2F2), which will lower the hydrogen release temperature from LiBH4. The effect of addition of F-/Cl-containing dopants (viz. LiBF4, NH4F, LiA1Cl4 and NH4Cl) on the hydrogen release from 2LiBH4:1MgH2 was investigated and LiBF4 was found to be the most effective among the dopants studied. Furthermore, the combined effect of LiBF4 and the catalyst precursor NbF5 was studied on the hydrogen release from 2LiBH4:1MgH2. It was found that the hydrogen release temperature for the LiBH4 and MgH2 components were substantially reduced by 55 degrees C and 112 degrees C respectively by the combined doping and catalytic effect from LiBF4 and NbF5. This sample was partially rehydrogenated under 400 degrees C and 100 bar, and upon cycling the hydrogen release temperature was lowered further for the LiBH4 component but increased for the MgH2 component.

10.
Chemistry ; 16(46): 13671-9, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20960440

RESUMEN

Two new three-dimensional Sc(III) metal-organic frameworks {[Sc(3)O(L(1))(3)(H(2)O)(3)]·Cl(0.5)(OH)(0.5)(DMF)(4)(H(2)O)(3)}(∞) (1) (H(2)L(1)=1,4-benzene-dicarboxylic acid) and {[Sc(3)O(L(2))(2)(H(2)O)(3)](OH)(H(2)O)(5)(DMF)}(∞) (2) (H(3)L(2)=1,3,5-tris(4-carboxyphenyl)benzene) have been synthesised and characterised. The structures of both 1 and 2 incorporate the trinuclear trigonal planar [Sc(3)(O)(O(2)CR)(6)] building block featuring three Sc(III) centres joined by a central µ(3)-O(2-) donor. Each Sc(III) centre is further bound by four oxygen donors from four different bridging carboxylate anions, and a molecule of water located trans to the µ(3)-O(2-) donor completes the six coordination at the metal centre. Frameworks 1 and 2 show high thermal stability with retention of crystallinity up to 350 °C. The desolvated materials 1a and 2a, in which the solvent has been removed from the pores but with water or hydroxide remaining coordinated to Sc(III), show BET surface areas based upon N(2) uptake of 634 and 1233 m(2) g(-1), respectively, and pore volumes calculated from the maximum N(2) adsorption of 0.25 cm(3) g(-1) and 0.62 cm(3) g(-1), respectively. At 20 bar and 78 K, the H(2) isotherms for desolvated 1a and 2a confirm 2.48 and 1.99 wt% total H(2) uptake, respectively. The isosteric heats of adsorption were estimated to be 5.25 and 2.59 kJ mol(-1) at zero surface coverage for 1a and 2a, respectively. Treatment of 2 with acetone followed by thermal desolvation in vacuo generated free metal coordination sites in a new material 2b. Framework 2b shows an enhanced BET surface area of 1511 m(2) g(-1) and a pore volume of 0.76 cm(3) g(-1), with improved H(2) uptake capacity and a higher heat of H(2) adsorption. At 20 bar, H(2) capacity increases from 1.99 wt% in 2a to 2.64 wt% for 2b, and the H(2) adsorption enthalpy rises markedly from 2.59 to 6.90 kJ mol(-1).

11.
J Am Chem Soc ; 132(12): 4092-4, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20199070

RESUMEN

Neutron powder diffraction experiments on D(2)-loaded NOTT-112 reveal that the axial sites of exposed Cu(II) ions in the smallest cuboctahedral cages are the first, strongest binding sites for D(2) leading to an overall discrimination between the two types of exposed Cu(II) sites at the paddlewheel nodes. Thus, the Cu(II) centers within the cuboctahedral cage are the first sites of D(2) binding with a Cu-D(2) distance of 2.23(1) A.

12.
J Am Chem Soc ; 131(45): 16493-9, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19852461

RESUMEN

The influence of nitrogen doping on the hydrogen uptake and storage capacity of high surface area carbon materials is presented in this report. To generate suitable study materials, we have exploited the relationship between synthesis conditions and textural properties of zeolite-templated carbons to generate a range of high surface area carbons with similar pore size distribution but which are either N-doped or N-free. For N-doped carbons, the nitrogen content was kept within a narrow range of between 4.7 and 7.7 wt %. The carbon materials, irrespective of whether they were doped or not, exhibited high surface area (1900-3700 m(2)/g) and pore volume (0.99 and 1.88 cm(3)/g), a micropore surface area of 1500-2800 m(2)/g, and a micropore volume of 0.65-1.24 cm(3)/g. The hydrogen uptake varied between 4.1 and 6.9 wt %. We present experimental data that indicates that the effect of N-doping on hydrogen uptake is only apparent when related to the surface area and pore volume associated with micropores rather than total porosity. Furthermore, by considering the isosteric heat of hydrogen adsorption and excess hydrogen uptake on N-free or N-doped carbons, it is shown that N-doping can be beneficial at lower coverage (low hydrogen uptake) but is detrimental at higher coverage (higher hydrogen uptake). The findings are consistent with previous theoretical predictions on the effect of N-doping of carbon on hydrogen uptake. The findings, therefore, add new insights that are useful for the development of carbon materials with enhanced hydrogen storage capacity.

13.
J Am Chem Soc ; 131(6): 2159-71, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19159298

RESUMEN

A series of isostructural metal-organic framework polymers of composition [Cu2(L)(H2O)2] (L= tetracarboxylate ligands), denoted NOTT-nnn, has been synthesized and characterized. Single crystal X-ray structures confirm the complexes to contain binuclear Cu(II) paddlewheel nodes each bridged by four carboxylate centers to give a NbO-type network of 64.82 topology. These complexes are activated by solvent exchange with acetone coupled to heating cycles under vacuum to afford the desolvated porous materials NOTT-100 to NOTT-109. These incorporate a vacant coordination site at each Cu(II) center and have large pore volumes that contribute to the observed high H2 adsorption. Indeed, NOTT-103 at 77 K and 60 bar shows a very high total H2 adsorption of 77.8 mg g(-)- equivalent to 7.78 wt% [wt% = (weight of adsorbed H2)/(weight of host material)] or 7.22 wt% [wt% = 100(weight of adsorbed H2)/(weight of host material + weight of adsorbed H2)]. Neutron powder diffraction studies on NOTT-101 reveal three adsorption sites for this material: at the exposed Cu(II) coordination site, at the pocket formed by three {Cu2} paddle wheels, and at the cusp of three phenyl rings. Systematic virial analysis of the H2 isotherms suggests that the H2 binding energies at these sites are very similar and the differences are smaller than 1.0 kJ mol-1, although the adsorption enthalpies for H2 at the exposed Cu(II) site are significantly affected by pore metrics. Introducing methyl groups or using kinked ligands to create smaller pores can enhance the isosteric heat of adsorption and improve H2 adsorption. However, although increasing the overlap of potential energy fields of pore walls increases the heat of H2 adsorption at low pressure, it may be detrimental to the overall adsorption capacity by reducing the pore volume.


Asunto(s)
Cobre/química , Hidrógeno/química , Compuestos Organometálicos/química , Adsorción , Ácidos Carboxílicos/química , Cristalografía por Rayos X , Peróxido de Hidrógeno/química , Ligandos , Modelos Moleculares , Difracción de Neutrones , Compuestos Organometálicos/síntesis química
14.
J Biomed Mater Res A ; 90(4): 947-58, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18646200

RESUMEN

When covalently attaching biomolecules to surfaces such as titanium, trifunctional silanes are commonly used as primers to produce surface amine groups. However, these primed surfaces are rarely uniform in structure due to networking of the silane. Mono-functional aminosilanes may result in more uniform structures, although their long-term stability and effect on osteoblast cell responses are possible issues for orthopedic applications. This study examines for the first time the optimization of peptide coupling to titanium using mono-functional aminosilane reaction chemistry. The resultant surface topography, chemistry, and thicknesses were characterized showing improved surface uniformity compared with trifunctional silanized surfaces. The stability of the coatings was examined over a period of 8 days in environments of varying pH, temperature, and humidity. In addition, human osteosarcoma (HOS) cell adhesion and spreading on the samples was examined; adhesion was minimal on silanized surfaces, but after functionalization with cysteine the cell density was greater than the titanium control and showed no overall detrimental effect on initial cell responses.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Péptidos/química , Silanos/química , Adhesión Celular , Línea Celular Tumoral , Cisteína , Humanos , Prótesis Articulares , Osteosarcoma/patología , Titanio/química
15.
Nat Chem ; 1(6): 487-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21378916

RESUMEN

Metal-organic frameworks (MOFs)--microporous materials constructed by bridging metal centres with organic ligands--show promise for applications in hydrogen storage, which is a key challenge in the development of the 'hydrogen economy'. Their adsorption capacities, however, have remained insufficient for practical applications, and thus strategies to enhance hydrogen-MOF interactions are required. Here we describe an anionic MOF material built from In(III) centres and tetracarboxylic acid ligands (H(4)L) in which kinetic trapping behaviour--where hydrogen is adsorbed at high pressures but not released immediately on lowering the pressure--is modulated by guest cations. With piperazinium dications in its pores, the framework exhibits hysteretic hydrogen adsorption. On exchange of these dications with lithium cations, no hysteresis is seen, but instead there is an enhanced adsorption capacity coupled to an increase in the isosteric heat of adsorption. This is rationalized by the different locations of the cations within the pores, determined with precision by X-ray crystallography.


Asunto(s)
Ácidos Carboxílicos/química , Hidrógeno/química , Indio/química , Compuestos Organometálicos/química , Adsorción , Aniones/química , Ácidos Carboxílicos/síntesis química , Cationes/química , Cristalografía por Rayos X , Cinética , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...