Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Res Notes ; 16(1): 348, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007440

RESUMEN

OBJECTIVES: Animal models of skin disease are used to evaluate therapeutics to alleviate disease. One common clinical dermatological complaint is pruritus (itch), but there is a lack of standardization in the characterization of pre-clinical models and scratching behavior, a key itch endpoint, is often neglected. One such model is the widely used imiquimod (IMQ) mouse model of psoriasis. However, it lacks characterized behavioral attributes like scratching, nor has widely expanded to other species like rats. Given these important attributes, this study was designed to broaden the characterization beyond the expected IMQ-induced psoriasis-like skin inflammatory skin changes and to validate the role of a potential therapeutic agent for pruritus in our genetic rat model. The study included female Wistar rats and genetically modified knockin (humanized proteinase-activated receptor 2 (F2RL1) female rats, with the widely used C57BL/6 J mice as a methodology control for typical IMQ dosing. RESULTS: We demonstrate that the IMQ model can be reproduced in rats, including their genetically modified derivatives, and how scratching can be used as a key behavioral endpoint. We systemically delivered an anti-PAR2 antibody (P24E1102) which reversed scratching bouts-validating this behavioral methodology and have shown its feasibility and value in identifying effective antipruritic drugs.


Asunto(s)
Antipruriginosos , Psoriasis , Ratones , Ratas , Femenino , Animales , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Imiquimod/efectos adversos , Ratas Wistar , Ratones Endogámicos C57BL , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Prurito/genética , Piel , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Modelos Animales de Enfermedad
2.
PLoS One ; 11(5): e0155799, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27192432

RESUMEN

Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer's disease (AD)-associated amyloid ßpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Ansiedad/metabolismo , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores , Proteínas Adaptadoras del Transporte Vesicular/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ansiedad/fisiopatología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Giro Dentado/metabolismo , Giro Dentado/fisiología , Femenino , Neuronas GABAérgicas/fisiología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Cereb Cortex ; 25(8): 2306-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24610117

RESUMEN

Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Animales , Astrocitos/patología , Astrocitos/fisiología , Lesiones Encefálicas/patología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Neuronas GABAérgicas/patología , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Técnicas de Cultivo de Tejidos
4.
Front Aging Neurosci ; 5: 29, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847533

RESUMEN

Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aß and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aß generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

5.
J Neurosci ; 32(30): 10423-37, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22836275

RESUMEN

Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer's disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aß. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase after injury (48 h) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3-null mice. We next found that head trauma potentiates BACE1 elevation in GGA3-null mice in the acute phase after TBI, and discovered that GGA1, a GGA3 homolog, is a novel caspase-3 substrate depleted at 48 h after TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro, indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of postmortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aß levels while GGA1 levels are restored in the subacute phase (7 d) after injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase after injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the subacute phase of injury.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Caspasa 3/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo
6.
J Cereb Blood Flow Metab ; 31(1): 351-61, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20588316

RESUMEN

The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aß) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aß(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.


Asunto(s)
Envejecimiento/fisiología , Apolipoproteína E4/genética , Apolipoproteína E4/fisiología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Péptidos beta-Amiloides/metabolismo , Animales , Agua Corporal/metabolismo , Encéfalo/patología , Química Encefálica/genética , Química Encefálica/fisiología , Cognición/fisiología , Fuerza de la Mano/fisiología , Inmunohistoquímica , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Recuperación de la Función , Percepción Espacial/fisiología
7.
J Biol Chem ; 285(31): 24108-19, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20484053

RESUMEN

BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of beta-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1-3 (Golgi-localized gamma-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and beta-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Regulación de la Expresión Génica , Ubiquitina/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Animales , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lisosomas/química , Lisosomas/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal
8.
Neuromuscul Disord ; 18(12): 953-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18952430

RESUMEN

As with many skeletal muscle diseases, the extraocular muscles (EOMs) are spared in skeletal muscle alpha-actin diseases, with no ophthalmoplegia even in severely affected patients. We hypothesised that the extraocular muscles sparing in these patients was due to significant expression of cardiac alpha-actin, the alpha-actin isoform expressed in heart and foetal skeletal muscle. We have shown by immunochemistry, Western blotting and a novel MRM-mass spectrometry technique, comparable levels of cardiac alpha-actin in the extraocular muscles of human, pig and sheep to those in the heart. The sparing of extraocular muscles in skeletal muscle alpha-actin disease is thus probably due to greater levels of cardiac alpha-actin, than the negligible amounts in skeletal muscles, diluting out the effects of the mutant skeletal muscle alpha-actin.


Asunto(s)
Actinas/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Músculos Oculomotores/metabolismo , Actinas/análisis , Animales , Western Blotting , Cobayas , Humanos , Inmunoquímica , Espectrometría de Masas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Ovinos , Especificidad de la Especie
9.
J Neuropathol Exp Neurol ; 67(9): 867-77, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18716557

RESUMEN

The mechanism of muscle weakness was investigated in an Australian family with an M9R mutation in TPM3 (alpha-tropomyosin(slow)). Detailed protein analyses of 5 muscle samples from 2 patients showed that nemaline bodies are restricted to atrophied Type 1 (slow) fibers in which the TPM3 gene is expressed. Developmental expression studies showed that alpha-tropomyosin(slow) is not expressed at significant levels until after birth, thereby likely explaining the childhood (rather than congenital) disease onset in TPM3 nemaline myopathy. Isoelectric focusing demonstrated that alpha-tropomyosin(slow) dimers, composed of equal ratios of wild-type and M9R-alpha-tropomyosin(slow), are the dominant tropomyosin species in 3 separate muscle groups from an affected patient. These findings suggest that myopathy-related slow fiber predominance likely contributes to the severity of weakness in TPM3 nemaline myopathy because of increased proportions of fibers that express the mutant protein. Using recombinant proteins and far Western blot, we demonstrated a higher affinity of tropomodulin for alpha-tropomyosin(slow) compared with beta-tropomyosin; the M9R substitution within alpha-tropomyosin(slow) greatly reduced this interaction. Finally, transfection of the M9R mutated and wild-type alpha-tropomyosin(slow) into myoblasts revealed reduced incorporation into stress fibers and disruption of the filamentous actin network by the mutant protein. Collectively, these results provide insights into the clinical features and pathogenesis of M9R-TPM3 nemaline myopathy.


Asunto(s)
Músculo Esquelético/patología , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miopatías Nemalínicas/patología , Tropomiosina/genética , Adulto , Western Blotting , Preescolar , Femenino , Feto , Humanos , Inmunohistoquímica , Lactante , Recién Nacido , Focalización Isoeléctrica , Persona de Mediana Edad , Fibras Musculares de Contracción Lenta/patología , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo
10.
Ann Neurol ; 61(2): 175-84, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17187373

RESUMEN

OBJECTIVE: To investigate seven congenital myopathy patients from six families: one French Gypsy, one Spanish Gypsy, four British Pakistanis, and one British Indian. Three patients required mechanical ventilation from birth, five died before 22 months, one is ventilator-dependent, but one, at 30 months, is sitting with minimal support. All parents were unaffected. METHODS: The alpha-skeletal muscle actin gene (ACTA1) was sequenced. Available muscle biopsies were investigated by standard histological and electron microscopic techniques. The expression of various proteins was determined by immunohistochemistry, western blotting, or both. RESULTS: Three homozygous ACTA1 null mutations were identified: p.Arg41X in the French patient, p.Tyr364fsX in the Spanish patient, and p.Asp181fsX10 in all five British patients. An absence of alpha-skeletal muscle actin protein but presence of alpha-cardiac actin was shown in all muscle biopsies examined, with more alpha-cardiac actin in the biopsy from the child with the greatest muscle function. Muscle biopsies from all patients exhibited nemaline bodies whereas three also contained zebra bodies. INTERPRETATION: The seven patients have recessive nemaline myopathy caused by absence of alpha-skeletal muscle actin. The level of retention of alpha-cardiac actin, the skeletal muscle fetal actin isoform, may determine alpha-skeletal muscle actin disease severity. This has implications for possible future therapy.


Asunto(s)
Actinas/deficiencia , Músculo Esquelético/metabolismo , Miopatías Nemalínicas/etiología , Actinas/genética , Actinas/metabolismo , Arginina , Ácido Aspártico , Western Blotting , Preescolar , Homocigoto , Humanos , Inmunohistoquímica , Lactante , Masculino , Microscopía Electrónica , Músculo Esquelético/patología , Mutación , Miocardio/metabolismo , Miopatías Nemalínicas/etnología , Miopatías Nemalínicas/patología , Tirosina
11.
Ann Neurol ; 56(5): 689-94, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15468086

RESUMEN

We report three heterozygous missense mutations of the skeletal muscle alpha actin gene (ACTA1) in three unrelated cases of congenital fiber type disproportion (CFTD) from Japan and Australia. This represents the first genetic cause of CFTD to be identified and confirms that CFTD is genetically heterogeneous. The three mutations we have identified Leucine221Proline, Aspartate292Valine, and Proline332Serine are novel. They have not been found previously in any cases of nemaline, actin, intranuclear rod, or rod-core myopathy caused by mutations in ACTA1. It remains unclear why these mutations cause type 1 fiber hypotrophy but no nemaline bodies. The three mutations all lie on one face of the actin monomer on the surface swept by tropomyosin during muscle activity, which may suggest a common pathological mechanism. All three CFTD cases with ACTA1 mutations had severe congenital weakness and respiratory failure without ophthalmoplegia. There were no clinical features specific to CFTD cases with ACTA1 mutations, but the presence of normal eye movements in a severe CFTD patient may be an important clue for the presence of a mutation in ACTA1.


Asunto(s)
Actinas/genética , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Mutación Missense , Miopatías Estructurales Congénitas/genética , Adenosina Trifosfatasas/metabolismo , Ácido Aspártico/genética , Biopsia/métodos , Preescolar , Análisis Mutacional de ADN/métodos , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Leucina/genética , Masculino , Modelos Moleculares , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Prolina/genética , Análisis de Secuencia de Proteína , Serina/genética , Valina/genética
12.
Biochem Biophys Res Commun ; 307(1): 74-9, 2003 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-12849983

RESUMEN

Mutations within the human skeletal muscle alpha-actin gene cause three different skeletal muscle diseases. Functional studies of the mutant proteins are necessary to better understand the pathogenesis of these diseases, however, no satisfactory system for the expression of mutant muscle actin proteins has been available. We investigated the baculovirus expression vector system (BEVS) for the abundant production of both normal and mutant skeletal muscle alpha-actin. We show that non-mutated actin produced in the BEVS behaves similarly to native actin, as shown by DNase I affinity purification, Western blotting, and consecutive cycles of polymerisation and depolymerisation. Additionally, we demonstrate the production of mutant actin proteins in the BEVS, without detriment to the insect cells in which they are expressed. The BEVS therefore is the method of choice for studying mutant actin proteins causing human diseases.


Asunto(s)
Actinas/metabolismo , Baculoviridae/genética , Vectores Genéticos , Músculo Esquelético/fisiología , Actinas/genética , Animales , Baculoviridae/metabolismo , Línea Celular , Desoxirribonucleasa I/metabolismo , Humanos , Músculo Esquelético/fisiopatología , Mutación , Polímeros/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...