Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Malar J ; 23(1): 159, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773528

RESUMEN

BACKGROUND: Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS: A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS: Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS: A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Primaquina , Adolescente , Adulto , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Antimaláricos/farmacocinética , Antimaláricos/sangre , Antimaláricos/administración & dosificación , Primaquina/farmacocinética , Primaquina/sangre , Primaquina/administración & dosificación
2.
J Med Food ; 26(5): 307-318, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37186895

RESUMEN

The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 µg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Juniperus , Animales , Ratones , Peso Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Frutas/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Juniperus/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/uso terapéutico , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/uso terapéutico , Sirtuina 1
3.
Artículo en Inglés | MEDLINE | ID: mdl-36343612

RESUMEN

Primaquine (PQ), a prototype 8-aminoquinoline (8-AQ) drug used to treat malaria, is rapidly metabolized into different inactive and active metabolites. Due to the hemolytic toxicity, the uses of PQ have been confined. To understand its overall metabolism and its relation to drug efficacy and toxicity, profiling of urine for the parent drug and its metabolites is important. The current study presents a convenient and rapid method for simultaneously quantifying primaquine (PQ) and its metabolites in human urine. A simple liquid-liquid extraction followed by chromatographic separation and quantification through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated to quantify PQ and its eleven metabolites in the urine of healthy human volunteers who received a single oral dose of PQ. The developed method separated fourteen analytes, including internal standards, within nine minutes of run time. The linearity of all analytes was suitable in the range of 1-500 ng/mL. The extraction recovery for all concentrations of analytes from urine was ranged from 90.1 to 112.9 %. The relative standard deviation for intra- and inter-day precision were < 9.8 and < 10.7 %, respectively. Along with PQ, its different metabolites were detected in urine. Primaquine-5,6-orthoquinone, the N-carbamoylglucuronide conjugate of PQ and carboxyprimaquine were the major metabolites found in urine. Significant enantiomeric differences in the urinary excretion profiles for PQ and metabolites were observed. This analytical method can be implemented in the pharmacokinetic analysis of PQ to explain its toxicity and clinical decision making.


Asunto(s)
Primaquina , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo
4.
J Cell Mol Med ; 26(13): 3675-3686, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35665597

RESUMEN

Primaquine (PQ) and Tafenoquine (TQ) are clinically important 8-aminoquinolines (8-AQ) used for radical cure treatment of P. vivax infection, known to target hepatic hypnozoites. 8-AQs can trigger haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd), yet the mechanisms of haemolytic toxicity remain unknown. To address this issue, we used a humanized mouse model known to predict haemolytic toxicity responses in G6PDd human red blood cells (huRBCs). To evaluate the markers of eryptosis, huRBCs were isolated from mice 24-48 h post-treatment and analysed for effects on phosphatidylserine (PS), intracellular reactive oxygen species (ROS) and autofluorescence. Urinalysis was performed to evaluate the occurrence of intravascular and extravascular haemolysis. Spleen and liver tissue harvested at 24 h and 5-7 days post-treatment were stained for the presence of CD169+ macrophages, F4/80+ macrophages, Ter119+ mouse RBCs, glycophorin A+ huRBCs and murine reticulocytes (muRetics). G6PDd-huRBCs from PQ/TQ treated mice showed increased markers for eryptosis as early as 24 h post-treatment. This coincided with an early rise in levels of muRetics. Urinalysis revealed concurrent intravascular and extravascular haemolysis in response to PQ/TQ. Splenic CD169+ macrophages, present in all groups at day 1 post-dosing were eliminated by days 5-7 in PQ/TQ treated mice only, while liver F4/80 macrophages and iron deposits increased. Collectively, our data suggest 8-AQ treated G6PDd-huRBCs have early physiological responses to treatment, including increased markers for eryptosis indicative of oxidative stress, resulting in extramedullary haematopoiesis and loss of splenic CD169+ macrophages, prompting the liver to act as the primary site of clearance.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Malaria Vivax , Aminoquinolinas/toxicidad , Animales , Modelos Animales de Enfermedad , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Hemólisis , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Ratones , Primaquina/uso terapéutico
5.
Drug Metab Pharmacokinet ; 45: 100463, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709685

RESUMEN

Primaquine (PQ) is a racemic drug used in treatment of malaria for six decades. Recent studies suggest that the two enantiomers of PQ are differentially metabolized in animals, and this results in different pharmacological and toxicological profiles. The current study characterizes the pharmacokinetic (PK) properties, metabolism and tolerability of the individual enantiomers of PQ in healthy human volunteers with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Two cohorts (at two dose levels), each with 18 subjects, participated in three study arms in a crossover fashion: a single dose of the (-)-R enantiomer (RPQ), a single dose of the (+)-S enantiomer (SPQ), and a single dose of racemic PQ (RSPQ). PQ and its key metabolites carboxyprimaquine (cPQ) and PQ-N-carbamoyl glucuronide (PQ-N-CG) were analyzed. Clear differences were observed in PK and metabolism of the two enantiomers. Relative PQ exposure was higher with SPQ as compared to RPQ. PQ maximum plasma concentration (Cmax) and area under the plasma concentration-time curve were higher for SPQ, while the apparent volume of distribution and total body clearance were higher for RPQ. Metabolism of the two enantiomers showed dramatic differences: plasma PQ-N-CG was derived solely from SPQ, while RPQ was much more efficiently converted to cPQ than was SPQ. Cmax of cPQ and PQ-N-CG were 10 and 2 times higher, respectively, than the parent drugs. The study demonstrates that the PK properties of PQ enantiomers show clear differences, and metabolism is highly enantioselective. Such differences in metabolism suggest potentially distinct toxicity profiles in multi-dose regimens, especially in G6PD-deficient subjects.


Asunto(s)
Antimaláricos , Primaquina , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Voluntarios Sanos , Humanos , Primaquina/metabolismo , Estereoisomerismo
6.
Malar J ; 21(1): 33, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123453

RESUMEN

BACKGROUND: Primaquine (PQ) has been used for the radical cure of relapsing Plasmodium vivax malaria for more than 60 years. PQ is also recommended for prophylaxis and prevention of transmission of Plasmodium falciparum. However, clinical utility of PQ has been limited due to toxicity in individuals with genetic deficiencies in glucose 6-phosphate dehydrogenase (G6PD). PQ is currently approved for clinical use as a racemic mixture. Recent studies in animals as well as humans have established differential pharmacological and toxicological properties of the two enantiomers of PQ. This has been attributed to differential metabolism and pharmacokinetics of individual PQ enantiomers. The aim of the current study is to evaluate the comparative pharmacokinetics (PK), tissue distribution and metabolic profiles of the individual enantiomers in mice. METHODS: Two groups of 21 male Albino ND4 Swiss mice were dosed orally with 45 mg/kg of S-(+)-PQ and R-(-)PQ respectively. Each of the enantiomers was comprised of a 50:50 mixture of 12C- and 13C- stable isotope labelled species (at 6 carbons on the benzene ring of the quinoline core). Three mice were euthanized from each group at different time points (at 0, 0.5, 1, 2, 4, 8, 24 h) and blood was collected by terminal cardiac bleed. Liver, spleen, lungs, kidneys and brain were removed, extracted and analysed using UPLC/MS. The metabolites were profiled by tandem mass (MS/MS) fragmentation profile and fragments with 12C-13C twin peaks. Non-compartmental analysis was performed using the Phoenix WinNonLin PK software module. RESULTS: The plasma AUC0-last (µg h/mL) (1.6 vs. 0.6), T1/2 (h) (1.9 vs. 0.45), and Tmax (h) (1 vs. 0.5) were greater for SPQ as compared to RPQ. Generally, the concentration of SPQ was higher in all tissues. At Tmax, (0.5-1 h in all tissues), the level of SPQ was 3 times that of RPQ in the liver. Measured Cmax of SPQ and RPQ in the liver were about 100 and 40 times the Cmax values in plasma, respectively. Similar observations were recorded in other tissues where the concentration of SPQ was higher compared to RPQ (2× in the spleen, 6× in the kidneys, and 49× in the lungs) than in the plasma. CPQ, the major metabolite, was preferentially generated from RPQ, with higher levels in all tissues (> 10× in the liver, and 3.5× in the plasma) than from SPQ. The PQ-o-quinone was preferentially formed from the SPQ (> 4× compared to RPQ), with higher concentrations in the liver. CONCLUSION: These studies show that in mice, PQ enantiomers are differentially biodistributed and metabolized, which may contribute to differential pharmacologic and toxicity profiles of PQ enantiomers. The findings on higher levels of PQ-o-quinone in liver and RBCs compared to plasma and preferential generation of this metabolite from SPQ are consistent with the higher anti-malarial efficacy of SPQ observed in the mouse causal prophylaxis test, and higher haemolytic toxicity in the humanized mouse model of G6PD deficiency. Potential relevance of these findings to clinical use of racemic PQ and other 8-aminoquinolines vis-à-vis need for further clinical evaluation of individual enantiomers are discussed.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Animales , Masculino , Ratones , Primaquina , Espectrometría de Masas en Tándem , Distribución Tisular
7.
Front Pharmacol ; 13: 1104735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726785

RESUMEN

Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.

9.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922294

RESUMEN

8-Aminoquinolines (8-AQs) are an important class of anti-infective therapeutics. The monoamine oxidases (MAOs) play a key role in metabolism of 8-AQs. A major role for MAO-A in metabolism of primaquine (PQ), the prototypical 8-AQ antimalarial, has been demonstrated. These investigations were further extended to characterize the enantioselective interactions of PQ and NPC1161 (8-[(4-amino-1-methylbutyl) amino]-5-[3, 4-dichlorophenoxy]-6-methoxy-4-methylquinoline) with human MAO-A and -B. NPC1161B, the (R)-(-) enantiomer with outstanding potential for malaria radical cure, treatment of visceral leishmaniasis and pneumocystis pneumonia infections is poised for clinical development. PQ showed moderate inhibition of human MAO-A and -B. Racemic PQ and (R)-(-)-PQ both showed marginally greater (1.2- and 1.6-fold, respectively) inhibition of MAO-A as compared to MAO-B. However, (S)-(+)-PQ showed a reverse selectivity with greater inhibition of MAO-B than MAO-A. Racemic NPC1161 was a strong inhibitor of MAOs with 3.7-fold selectivity against MAO-B compared to MAO-A. The (S)-(+) enantiomer (NPC1161A) was a better inhibitor of MAO-A and -B compared to the (R)-(-) enantiomer (NPC1161B), with more than 10-fold selectivity for inhibition of MAO-B over MAO-A. The enantioselective interaction of NPC1161 and strong binding of NPC1161A with MAO-B was further confirmed by enzyme-inhibitor binding and computational docking analyses. Differential interactions of PQ and NPC1161 enantiomers with human MAOs may contribute to the enantioselective pharmacodynamics and toxicity of anti-infective 8-AQs therapeutics.

10.
Molecules ; 26(4)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672163

RESUMEN

To date very few promising leads from natural products (NP) secondary metabolites with antiviral and immunomodulatory properties have been identified for promising/potential intervention for COVID-19. Using in-silico docking studies and genome based various molecular targets, and their in vitro anti-SARS CoV-2 activities against whole cell and/or selected protein targets, we select a few compounds of interest, which can be used as potential leads to counteract effects of uncontrolled innate immune responses, in particular those related to the cytokine storm. A critical factor for prevention and treatment of SARS-CoV-2 infection relates to factors independent of viral infection or host response. They include population-related variables such as concurrent comorbidities and genetic factors critically relevant to COVID-19 health disparities. We discuss population risk factors related to SARS-CoV-2. In addition, we focus on virulence related to glucose-6-phosphate dehydrogenase deficiency (G6PDd), the most common human enzymopathy. Review of data on the response of individuals and communities with high prevalence of G6PDd to NP, prompts us to propose the rationale for a population-specific management approach to rationalize design of therapeutic interventions of SARS-CoV-2 infection, based on use of NP. This strategy may lead to personalized approaches and improve disease-related outcomes.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , COVID-19/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/tratamiento farmacológico , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Humanos
11.
Artículo en Inglés | MEDLINE | ID: mdl-33387859

RESUMEN

The antimalarial drug primaquine (PQ) causes methemoglobinemia and hemolysis in individuals with a genetic deficiency of glucose 6-phosphate dehydrogenase. Reactive oxygen species (ROS) generated by redox cycling of the metabolite primaquine-5,6-orthoquinone (POQ) in erythrocytes has been attributed to be responsible for the toxicity of PQ. Carboxyprimaquine (CPQ), the major human plasma metabolite of PQ, can also form the analogous carboxyprimaquine-5,6-orthoquinone (CPOQ) metabolite, which can also generate ROS in erythrocytes by redox cycling, thus contributing to the hematotoxicity of this drug. In order to study these pathways and characterize such effects in vivo, methods are needed for characterization and quantification of POQ and CPOQ in human erythrocytes. The purpose of this work was to develop a validated method for the quantitative determination of CPOQ and POQ metabolites in human erythrocytes, suitable for clinical studies of PQ metabolism. Several liquid-liquid extraction methods using different organic solvents had been investigated. The solvent mixture of water-methanol-acetonitrile (9:9:5, v/v) was shown to yield the best results for the two analytes. Chromatographic analysis of POQ and CPOQ in human erythrocytes was achieved on a high strength silica (HSS) column and gradient elution (water and acetonitrile, both containing 0.1% formic acid) by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Quantitative estimation of POQ and CPOQ was executed by monitoring ion pairs of m/z 260.23 > 175.03 and m/z 275.19 > 175.04, respectively. The method, which was validated for precision, accuracy, selectivity, and linearity, was successfully applied for the quantitative determination of POQ and CPOQ, the key metabolites of PQ in human erythrocytes in PQ clinical study.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Primaquina/análogos & derivados , Primaquina/sangre , Espectrometría de Masas en Tándem/métodos , Eritrocitos/química , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
12.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096940

RESUMEN

Cannabidiol (CBD) is a biologically active, non-psychotropic component of Cannabis sativa whose popularity has grown exponentially in recent years. Besides a wealth of potential health benefits, ingestion of CBD poses risks for a number of side effects, of which hepatotoxicity and CBD/herb-drug interactions are of particular concern. Here, we investigated the interaction potential between the cannabidiol-rich cannabis extract (CRCE) and methylsulfonylmethane (MSM), a popular dietary supplement, in the mouse model. For this purpose, 8-week-old male C57BL6/J mice received MSM-containing water (80 mg/100 mL) ad libitum for 17 days. During the last three days of treatment, mice received three doses of CRCE administered in sesame oil via oral gavage (123 mg/kg/day). Administration of MSM alone did not result in any evidence of liver toxicity and did not induce expression of mouse cytochrome P450 (CYP) enzymes. Administration of CRCE did produce significant (p < 0.05) increases in Cyp1a2, Cyp2b10, Cyp2c29, Cyp3a4, Cyp3a11, Cyp2c65, and Cyp2c66 messenger RNA, however, this effect was not amplified by MSM/CRCE co-treatment. Similarly, no evidence of liver toxicity was observed in MSM/CRCE dosed mice. In conclusion, short-term MSM/CRCE co-administration did not demonstrate any evidence of hepatotoxicity in the mouse model.


Asunto(s)
Cannabidiol/toxicidad , Extractos Vegetales/toxicidad , Fosfatasa Alcalina/sangre , Animales , Cannabidiol/farmacocinética , Cannabis/química , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Suplementos Dietéticos/toxicidad , Glutamina/análogos & derivados , Glutamina/metabolismo , Interacciones de Hierba-Droga , Masculino , Ratones Endogámicos C57BL , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Taurina/análogos & derivados , Taurina/metabolismo , Pruebas de Toxicidad
13.
J Diet Suppl ; 17(5): 493-502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32543246

RESUMEN

The proliferation in the last few years of cannabidiol (CBD)-containing products in the U.S. markets has been greatly accelerated by changes in the regulatory environment, and by perceptions of their health benefits and presumed safety. The result has been aggressive marketing of many types of products, some of dubious quality, making or implying drug-type claims. The recent approval by the U.S. Food and Drug Administration (FDA) of CBD in the form of Epidiolex®, further complicates the regulatory picture. In addition, a number of studies suggest that, at least at high doses, there may be serious adverse effects or drug interactions associated with CBD. At present, CBD-containing products do not meet the strict definition of dietary supplements, but the FDA is continuing to consider some framework under which they might be allowed. Meanwhile, FDA has adopted a "risk-based" enforcement policy. Possible approaches to a new framework for regulation of CBD products as dietary supplements are discussed here, including expanded research emphasis, a robust corporate stewardship program, and a rigorous adverse event reporting program.


Asunto(s)
Cannabidiol/uso terapéutico , Suplementos Dietéticos , Aprobación de Drogas/organización & administración , United States Food and Drug Administration , Humanos , Estados Unidos
14.
J Diet Suppl ; 17(5): 543-560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32400224

RESUMEN

Cannabidiol (CBD) is the major non-psychotropic phytocannabinoid present in Cannabis sativa. In 2018, Congress designated certain C. sativa plant material as "hemp," thus removing it from the DEA's list of controlled substances. As a result, CBD-containing hemp extracts and other CBD products are now widely available and heavily marketed, yet their FDA regulatory status is still hotly debated. The goal of this study was to investigate the effects of a cannabidiol-rich cannabis extract (CRCE) on the gut microbiome and associated histomorphological and molecular changes in the mouse gut mucosa. Male C57BL6/J mice were gavaged with either 0, 61.5, 184.5, or 615 mg/kg/bw of CRCE in sesame oil for 2 weeks (Mon-Fri). Substantial CRCE-induced increases in the relative abundance of A. muciniphila, a bacterial species currently accepted as probiotic, was observed in fecal samples at all doses. This was paralleled by decreases in the relative abundance of other gut bacterial species. Coincident with the observed changes in gut ecology were multiple pro-inflammatory responses, including increased expression of cytokines and chemokines-Il1ß, Cxcl1, and Cxcl2 in the colon tissue. Furthermore, dramatic increases in the relative abundance of A. muciniphila significantly decreased expression of Muc2-a gene intimately associated with gut integrity. Taken together, these findings raise concerns about the safety of long-term CBD usage and underline the need for additional well-designed studies into its tolerability and efficacy.


Asunto(s)
Cannabidiol/efectos adversos , Cannabis , Colitis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/efectos adversos , Akkermansia/efectos de los fármacos , Animales , Quimiocinas/efectos de los fármacos , Colon/metabolismo , Citocinas/efectos de los fármacos , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mucina 2/metabolismo
15.
J Diet Suppl ; 17(5): 599-607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431186

RESUMEN

Products containing cannabidiol (CBD) are now available throughout the United States, but their quality is oftentimes questionable. The CBD and Δ9-tetrahydrocannabinol (THC) content of 25 commercially available hemp oil products, obtained throughout the state of Mississippi, was determined via gas chromatography/flame ionization detection (GC/FID). These products were also analyzed for the presence of synthetic cannabinoids using full scan gas chromatography/mass spectrometry (GC/MS). Analytical findings were compared to label claims for CBD content. Product label claims for CBD ranged from no claim to 500 mg per serving; however, marked variability was observed between actual CBD content and claimed quantities. Of the 25 products, only three were within ±20% of label claim. Fifteen were well below the stated claim for CBD; two exceed claims in excess of 50%; and 5 made no claims. In addition, THC content for three products exceeded the 0.3% legal limit. Furthermore, four products-primarily marketed for vaping-were adulterated with synthetic cannabinoids. From this small, but diverse, sampling of hemp-derived merchandise, it appears that most product label claims do not accurately reflect actual CBD content and are fraudulent in that regard. Moreover, products that exceed legal THC levels may jeopardize a consumer's employment status (i.e. failed "drug test"), while those adulterated with synthetic cannabinoids may subject them to serious adverse health effects. These findings argue strongly for further development of current good manufacturing practices for CBD-containing products and their stringent enforcement.


Asunto(s)
Cannabidiol/análisis , Cannabis , Comercio/estadística & datos numéricos , Dronabinol/análisis , Etiquetado de Productos/estadística & datos numéricos , Contaminación de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Mississippi
16.
Chem Commun (Camb) ; 56(11): 1673-1676, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31939454

RESUMEN

Methylene blue (MB) with a 10-N-carbamoyl linkage was discovered and developed as a multifunctional far-red (660 nm) photocleavable ligand capable of rendering a series of MB-conjugated compounds with off-to-on fluorescence switch properties through the controlled release of MB.

17.
Heliyon ; 6(1): e02782, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909232

RESUMEN

Current clinical antidiabetic drugs, like rosiglitazone 1, have been implicated in some serious side effects like edema, weight gain, and heart failure, making it necessary to find alternative agents. Partial agonists of peroxisome-proliferator activated receptor-gamma (PPARγ) were determined to possess improved insulin sensitivity without undeseirable side-effects when compared to full agonists of PPARγ, like rosiglitazone 1. The traditional Chinese medicine (TCM) plants, Goji (Lycium barbarum and Lycium chinense) are widely used for treating symptoms related to various diseases including diabetes and hypertension. Twenty-seven reported compounds from Goji were docked into both partial- and full-agonist binding sites of PPARγ. Amongst the docked compounds, phenylethylamide-based phytochemicals (5-9) (termed as tyramine-derivatives, TDs) were found to possess good docking scores and binding poses with favorable interactions. Synthesis of 24 TDs, including three naturally occuring amides (6, 8, 9) were synthesized and tested for PPARγ gene induction with cell-based assay. Three compounds showed similar or higher fold induction than the positive control, rosiglitazone. Among these three active TDs, trans-N-feruloyloctopamine (9) and tyramine derivatives-enriched extract (TEE) (21%) of the root bark of L. chinense were further studied in vivo using db/db mice. However, both TEE as well as 9 did not show significant antidiabetic properties in db/db mice. In vivo results suggest that the proposed antidiabetic property of Lycium species may not be due to tyramine derivatives alone. Further studies of tyramine derivatives or enriched extract(s) for other bioactivities like hypocholesterolemic activities, and studies of novel isolated compounds from Goji will enable a more complete understanding of their bioactivities.

18.
Front Pharmacol ; 10: 1265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708786

RESUMEN

Malaria is a major global health threat, with nearly half the world's population at risk of infection. Given the recently described delayed clearance of parasites by artemisinin-combined therapies, new antimalarials are needed to facilitate the global effort toward elimination and eradication. NPC1161 is an 8-aminoquinoline that is derived from primaquine with an improved therapeutic profile compared to the parent compound. The (R)-(-) enantiomer (NPC1161B) has a lower effective dose that results in decreased toxic side effects such as hemolysis compared to the (S)-(+)-enantiomer, making it a promising compound for consideration for clinical development. We explored the effect of NPC1161B on Plasmodium falciparum oocyst and sporozoite development to evaluate its potential transmission-blocking activity viz. its ability to cure mosquitoes of an ongoing infection. When mosquitoes were fed NPC1161B 4 days after P. falciparum infection, we observed that total oocyst numbers were not affected by NPC1161B treatment. However, the sporozoite production capacity of the oocysts was impaired, and salivary gland sporozoite infections were completely blocked, rendering the mosquitoes non-infectious. Importantly, NPC1161B did not require prior liver metabolism for its efficacy as is required in mammalian systems, suggesting that an alternative metabolite is produced in the mosquito that is active against the parasite. We performed liquid chromatography-mass spectrometry (LC-MS)/MS analysis of methanol extracts from the midguts of mosquitoes fed on an NPC1161B (434.15 m/z)-treated blood meal and identified a compound with a mass of 520.2 m/z, likely a conjugate of NPC1161B or an oxidized metabolite. These findings establish NPC1161B, and potentially its metabolites, as transmission-blocking candidates for the treatment of P. falciparum.

19.
Molecules ; 24(12)2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31212965

RESUMEN

The goal of this study was to investigate the potential for a cannabidiol-rich cannabis extract (CRCE) to interact with the most common over-the-counter drug and the major known cause of drug-induced liver injury-acetaminophen (APAP)-in aged female CD-1 mice. Gavaging mice with 116 mg/kg of cannabidiol (CBD) [mouse equivalent dose (MED) of 10 mg/kg of CBD] in CRCE delivered with sesame oil for three consecutive days followed by intraperitoneally (i.p.) acetaminophen (APAP) administration (400 mg/kg) on day 4 resulted in overt toxicity with 37.5% mortality. No mortality was observed in mice treated with 290 mg/kg of CBD+APAP (MED of 25 mg/kg of CBD) or APAP alone. Following CRCE/APAP co-administration, microscopic examination revealed a sinusoidal obstruction syndrome-like liver injury-the severity of which correlated with the degree of alterations in physiological and clinical biochemistry end points. Mechanistically, glutathione depletion and oxidative stress were observed between the APAP-only and co-administration groups, but co-administration resulted in much greater activation of c-Jun N-terminal kinase (JNK). Strikingly, these effects were not observed in mice gavaged with 290 mg/kg CBD in CRCE followed by APAP administration. These findings highlight the potential for CBD/drug interactions, and reveal an interesting paradoxical effect of CBD/APAP-induced hepatotoxicity.


Asunto(s)
Acetaminofén/efectos adversos , Cannabidiol/efectos adversos , Enfermedad Veno-Oclusiva Hepática/diagnóstico , Enfermedad Veno-Oclusiva Hepática/etiología , Animales , Biomarcadores , Cannabidiol/química , Cannabis/química , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos , Fitoquímicos/efectos adversos , Fitoquímicos/química , Extractos Vegetales/efectos adversos
20.
Molecules ; 24(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052254

RESUMEN

The goal of this study was to investigate Cannabidiol (CBD) hepatotoxicity in 8-week-old male B6C3F1 mice. Animals were gavaged with either 0, 246, 738, or 2460 mg/kg of CBD (acute toxicity, 24 h) or with daily doses of 0, 61.5, 184.5, or 615 mg/kg for 10 days (sub-acute toxicity). These doses were the allometrically scaled mouse equivalent doses (MED) of the maximum recommended human maintenance dose of CBD in EPIDIOLEX® (20 mg/kg). In the acute study, significant increases in liver-to-body weight (LBW) ratios, plasma ALT, AST, and total bilirubin were observed for the 2460 mg/kg dose. In the sub-acute study, 75% of mice gavaged with 615 mg/kg developed a moribund condition between days three and four. As in the acute phase, 615 mg/kg CBD increased LBW ratios, ALT, AST, and total bilirubin. Hepatotoxicity gene expression arrays revealed that CBD differentially regulated more than 50 genes, many of which were linked to oxidative stress responses, lipid metabolism pathways and drug metabolizing enzymes. In conclusion, CBD exhibited clear signs of hepatotoxicity, possibly of a cholestatic nature. The involvement of numerous pathways associated with lipid and xenobiotic metabolism raises serious concerns about potential drug interactions as well as the safety of CBD.


Asunto(s)
Cannabidiol/química , Cannabidiol/farmacología , Cannabis/química , Hepatocitos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Pruebas de Función Hepática , Ratones , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...