Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 974210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275684

RESUMEN

The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/genética , Gripe Aviar/epidemiología , Subtipo H7N9 del Virus de la Influenza A/genética , Pollos/genética , Hemaglutininas/genética , Nucleoproteínas/genética , Linfocitos T CD8-positivos/patología , Mutación , Antivirales , ARN
2.
Virol J ; 18(1): 197, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34641882

RESUMEN

BACKGROUND: Hendra virus (HeV) has caused lethal disease outbreaks in humans and horses in Australia. Flying foxes are the wildlife reservoir from which the virus was first isolated in 1996. Following a heat stress mortality event in Australian flying foxes in 2013, a novel HeV variant was discovered. This study describes the subsequent surveillance of Australian flying foxes for this novel virus over a nine year period using qRT-PCR testing of tissues from flying foxes submitted primarily for Australian bat lyssavirus diagnosis. Genome sequencing and characterisation of the novel HeV variant was also undertaken. METHODS: Spleen and kidney samples harvested from flying fox carcasses were initially screened with two real-time qRT-PCR assays specific for the prototype HeV. Two additional qRT-PCR assays were developed specific for the HeV variant first detected in samples from a flying fox in 2013. Next-generation sequencing and virus isolation was attempted from selected samples to further characterise the new virus. RESULTS: Since 2013, 98 flying foxes were tested and 11 were positive for the new HeV variant. No samples were positive for the original HeV. Ten of the positive samples were from grey-headed flying foxes (GHFF, Pteropus poliocephalus), however this species was over-represented in the opportunistic sampling (83% of bats tested were GHFF). The positive GHFF samples were collected from Victoria and South Australia and one positive Little red flying fox (LRFF, Pteropus scapulatus) was collected from Western Australia. Immunohistochemistry confirmed the presence of henipavirus antigen, associated with an inflammatory lesion in cardiac blood vessels of one GHFF. Positive samples were sequenced and the complete genome was obtained from three samples. When compared to published HeV genomes, there was 84% sequence identity at the nucleotide level. Based on phylogenetic analyses, the newly detected HeV belongs to the HeV species but occupies a distinct lineage. We have therefore designated this virus HeV genotype 2 (HeV-g2). Attempts to isolate virus from PCR positive samples have not been successful. CONCLUSIONS: A novel HeV genotype (HeV-g2) has been identified in two flying fox species submitted from three states in Australia, indicating that the level of genetic diversity for HeV is broader than first recognised. Given its high genetic relatedness to HeV, HeV-g2 is a zoonotic pathogen.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Animales , Australia/epidemiología , Genotipo , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Caballos , Filogenia
3.
PLoS One ; 11(9): e0162375, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631618

RESUMEN

Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.


Asunto(s)
Pollos/microbiología , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/patogenicidad , Animales , Perros , Virus de la Influenza A/aislamiento & purificación , Laos , Células de Riñón Canino Madin Darby , Virus Reordenados/aislamiento & purificación , Carga Viral
4.
Virol J ; 12: 18, 2015 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-25889293

RESUMEN

BACKGROUND: Variant high pathogenicity avian influenza (HPAI) H5 viruses have recently emerged as a result of reassortment of the H5 haemagglutinin (HA) gene with different neuraminidase (NA) genes, including NA1, NA2, NA5, NA6 and NA8. These viruses form a newly proposed HA clade 2.3.4.4 (previously provisionally referred to as clade 2.3.4.6), and have been implicated in disease outbreaks in poultry in China, South Korea, Laos, Japan and Vietnam and a human fatality in China. There is real concern that this new clade may be wide spread and not readily identified using existing diagnostic algorithms. FINDINGS: Fluorescent probe based reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) assays were developed to facilitate the identification of novel clade 2.3.4.4 viruses of H5N6 subtype emerging in Asia. Assays were aimed at the haemagglutinin (HA) gene for clade identification and at the NA gene to identify N6. The HA assay employing a minor groove binder (MGB) probe was able to detect and differentiate A/duck/Laos/XBY004/2014(H5N6) and related influenza A(H5N6) virus isolates belonging to the proposed clade 2.3.4.4 from other H5 HPAI viruses. In addition, an Eurasian N6 assay was able to differentiate N6 from other NA subtypes. CONCLUSIONS: Laos influenza A(H5N6) virus representative of proposed clade 2.3.4.4, was detected and differentiated from viruses in other H5N1 clades using a clade-specific HA RT-qPCR assay whereas the N6-NA subtype was determined by an Eurasian N6 RT-qPCR assay. Such a clade-specific assay would be of particular value for surveillance and in diagnostic laboratories where sequencing is not readily available.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Gripe Aviar/diagnóstico , Gripe Aviar/virología , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Asia , Aves , Aves de Corral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...