Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 144: 213197, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462387

RESUMEN

The use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology. The effects of the PVA degree of hydrolysis (DH) (98 % vs 99 %), method of electrospinning (needleless DC vs AC), and heat treatment duration (1-8 h) were investigated. All heat treated supports maintained their cytocompatibility, whilst tensile tests indicated that the 99 % hydrolysed DC electrospun mats were stronger compared to their 98 % DH counterparts. Although, and at the described conditions, AC electrospinning produced fibres with more than double the diameter compared to those from DC electrospinning, it was not chosen for subsequent experiments because it is still under development. Evidence of unimpeded passage of SY5Y neuroblastoma cells and undiluted defibrinated sheep's blood in flow-through filtration experiments confirmed the successful creation of 3D networks with minimum resistance to mass transfer and lack of non-specific cell binding to the base material, paving the way for the development of novel, highly selective ICS devices for tumour surgeries.


Asunto(s)
Calor , Alcohol Polivinílico , Animales , Ovinos , Alcohol Polivinílico/química
2.
Biotechnol Bioeng ; 118(8): 3175-3186, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34076888

RESUMEN

Cultivated meat is an emerging field, aiming to establish the production of animal tissue for human consumption in an in vitro environment, eliminating the need to raise and slaughter animals for their meat. To realise this, the expansion of primary cells in a bioreactor is needed to achieve the high cell numbers required. The aim of this study was to develop a scalable, microcarrier based, intensified bioprocess for the expansion of bovine adipose-derived stem cells as precursors of fat and muscle tissue. The intensified bioprocess development was carried out initially in spinner flasks of different sizes and then translated to fully controlled litre scale benchtop bioreactors. Bioprocess intensification was achieved by utilising the previously demonstrated bead-to-bead transfer phenomenon and through the combined addition of microcarrier and medium to double the existing surface area and working volume in the bioreactor. Choosing the optimal time point for the additions was critical in enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was obtained at the litre scale in the intensified bioprocess compared to the baseline (**p < .005). The quality of the cells was evaluated pre- and post-expansion and the cells were found to maintain their phenotype and differentiation capacity.


Asunto(s)
Tejido Adiposo , Reactores Biológicos , Técnicas de Cultivo de Célula , Proliferación Celular , Células Madre , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Bovinos , Células Madre/citología , Células Madre/metabolismo
3.
Biotechnol Bioeng ; 118(1): 329-344, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32955111

RESUMEN

Human olfactory mucosa cells (hOMCs) have potential as a regenerative therapy for spinal cord injury. In our earlier work, we derived PA5 cells, a polyclonal population that retains functional attributes of primary human OMCs. Microcarrier suspension culture is an alternative to planar two-dimensinal culture to produce cells in quantities that can meet the needs of clinical development. This study aimed to screen the effects of 10 microcarriers on PA5 hOMCs yield and phenotype. Studies performed in well plates led to a 2.9-fold higher cell yield on plastic compared to plastic plus microcarriers with upregulation of neural markers ß-III tubulin and nestin for both conditions. Microcarrier suspension culture resulted in concentrations of 1.4 × 105 cells/ml and 4.9 × 104 cells/ml for plastic and plastic plus, respectively, after 7 days. p75NTR transcript was significantly upregulated for PA5 hOMCs grown on Plastic Plus compared to Plastic. Furthermore, coculture of PA5 hOMCs grown on Plastic Plus with a neuronal cell line (NG108-15) led to increased neurite outgrowth. This study shows successful expansion of PA5 cells using suspension culture on microcarriers, and it reveals competing effects of microcarriers on cell expansion versus functional attributes, showing that designing scalable bioprocesses should not only be driven by cell yields.


Asunto(s)
Diferenciación Celular , Regeneración Nerviosa , Mucosa Olfatoria/metabolismo , Línea Celular , Técnicas de Cocultivo , Humanos , Mucosa Olfatoria/citología
4.
J Tissue Eng ; 11: 2041731420954712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178409

RESUMEN

Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables. While titanium doping was found to support hMSCs expansion and differentiation, as well as endothelial cell-derived vessel formation, additional doping with cobalt did not improve the functionality of the microspheres. Furthermore, the microfluidic bioreactor enabled screening of culture parameters for cell culture on microspheres that could be potentially translated to a scaled-up system for tissue-engineered bone manufacturing.

5.
Biotechnol Bioeng ; 117(10): 3029-3039, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32568406

RESUMEN

Traditional farm-based products based on livestock are one of the main contributors to greenhouse gas emissions. Cultivated meat is an alternative that mimics animal meat, being produced in a bioreactor under controlled conditions rather than through the slaughtering of animals. The first step in the production of cultivated meat is the generation of sufficient reserves of starting cells. In this study, bovine adipose-derived stem cells (bASCs) were used as starting cells due to their ability to differentiate towards both fat and muscle, two cell types found in meat. A bioprocess for the expansion of these cells on microcarriers in spinner flasks was developed. Different cell seeding densities (1,500, 3,000, and 6,000 cells/cm2 ) and feeding strategies (80%, 65%, 50%, and combined 80%/50% medium exchanges) were investigated. Cell characterization was assessed pre- and postbioprocessing to ensure that bioprocessing did not negatively affect bASC quality. The best growth was obtained with the lowest cell seeding density (1,500 cells/cm2 ) with an 80% medium exchange performed (p < .0001) which yielded a 28-fold expansion. The ability to differentiate towards adipogenic, osteogenic, and chondrogenic lineages was retained postbioprocessing and no significant difference (p > .5) was found in clonogenicity pre- or postbioprocessing in any of the feeding regimes tested.


Asunto(s)
Reactores Biológicos/normas , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Abastecimiento de Alimentos/métodos , Carne/provisión & distribución , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Animales , Bovinos , Recuento de Células , Células Madre Mesenquimatosas/metabolismo
6.
Bioengineering (Basel) ; 7(2)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290611

RESUMEN

Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100ß expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100ß expression were used in NG108-15 neuron co-cultures, those with the highest S100ß expression resulted in longer and more numerous neurites (22.8 ± 2.4 µm neurite length/neuron for laminin) compared with the lowest S100ß expression (17.9 ± 1.1 µm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.

7.
Sci Rep ; 9(1): 13190, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519924

RESUMEN

Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.


Asunto(s)
Genes myc , Mucosa Olfatoria/citología , Proteínas Recombinantes/genética , Transducción Genética/métodos , Adulto , Animales , Biomarcadores/metabolismo , Línea Celular , Técnicas de Cocultivo , Ganglios Espinales/citología , Gentamicinas/farmacología , Humanos , Cariotipificación , Ratones , Neuroblastoma/patología , Mucosa Olfatoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriales/citología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Transgenes
8.
J Tissue Eng ; 10: 2041731419830264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858965

RESUMEN

Tissue engineering has the potential to augment bone grafting. Employing microcarriers as cell-expansion vehicles is a promising bottom-up bone tissue engineering strategy. Here we propose a collaborative approach between experimental work and mathematical modelling to develop protocols for growing microcarrier-based engineered constructs of clinically relevant size. Experiments in 96-well plates characterise cell growth with the model human cell line MG-63 using four phosphate glass microcarrier materials. Three of the materials are doped with 5 mol% TiO2 and contain 0%, 2% or 5% CoO, and the fourth material is doped only with 7% TiO2 (0% CoO). A mathematical model of cell growth is parameterised by finding material-specific growth coefficients through data-fitting against these experiments. The parameterised mathematical model offers more insight into the material performance by comparing culture outcome against clinically relevant criteria: maximising final cell number starting with the lowest cell number in the shortest time frame. Based on this analysis, material 7% TiO2 is identified as the most promising.

9.
J Tissue Eng ; 10: 2041731419827922, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30834100

RESUMEN

Research into cellular engineered bone grafts offers a promising solution to problems associated with the currently used auto- and allografts. Bioreactor systems can facilitate the development of functional cellular bone grafts by augmenting mass transport through media convection and shear flow-induced mechanical stimulation. Developing successful and reproducible protocols for growing bone tissue in vitro is dependent on tuning the bioreactor operating conditions to the specific cell type and graft design. This process, largely reliant on a trial-and-error approach, is challenging, time-consuming and expensive. Modelling can streamline the process by providing further insight into the effect of the bioreactor environment on the cell culture, and by identifying a beneficial range of operational settings to stimulate tissue production. Models can explore the impact of changing flow speeds, scaffold properties, and nutrient and growth factor concentrations. Aiming to act as an introductory reference for bone tissue engineers looking to direct their experimental work, this article presents a comprehensive framework of mathematical models on various aspects of bioreactor bone cultures and overviews modelling case studies from literature.

10.
J Tissue Eng ; 10: 2041731419825772, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800261

RESUMEN

Tissue engineering is a promising approach for bone regeneration; yet challenges remain that limit successful translation to patients. It is necessary to understand how real-world manufacturing processes will affect the constituent cells and biomaterials that are needed to create engineered bone. Bioactive phosphate glasses processed into microspheres are an attractive platform for expanding bone-forming cells and also for driving their osteogenic differentiation and maturation. The aim of this study was to assess whether Ti-doped phosphate glass microspheres could support osteoblastic cell responses in dynamic cell culture environments. Dynamic culture conditions were achieved using microwell studies under orbital agitation. Dimensionless parameters such as the Froude number were used to inform the choice of agitation speeds, and the impact on cell proliferation and microunit formation was quantified. We found that phosphate glass microspheres doped with titanium dioxide at both 5 and 7 mol% provided a suitable biomaterial platform for effective culture of MG63 osteoblastic cells and was not cytotoxic. Dynamic culture conditions supported expansion of MG63 cells and both 150 and 300 rpm orbital shake resulted in higher cell yield than static cultures at the end of the culture (day 13). The Froude number analysis provided insight into how the microunit size could be manipulated to enable an appropriate agitation speed to be used, while ensuring buoyancy of the microunits. These small-scale experiments and analyses provide understanding of the impact of fluid flow on cell expansion that will have increasing importance when scaling up to process technologies that can deliver clinical quantities of cell-microsphere units. Such knowledge will enable future engineering of living bone-like material using processing systems such as bioreactors that use mixing and agitation for nutrient transfer, therefore introducing cells to dynamic culture conditions.

11.
Sci Rep ; 8(1): 14440, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262897

RESUMEN

Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2-8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Neuronas/citología , Mucosa Olfatoria/citología , Animales , Línea Celular , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Mucosa Olfatoria/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento , Receptores de Factor de Crecimiento Nervioso/metabolismo
12.
Sci Rep ; 8(1): 9402, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925885

RESUMEN

Nanoscale extracellular vesicles (EVs) including exosomes (50-150 nm membrane particles) have emerged as promising cancer biomarkers due to the carried genetic information about the parental cells. However the sensitive detection of these vesicles remains a challenge. Here we present a label-free electrochemical sensor to measure the EVs secretion levels of hypoxic and normoxic MCF-7 cells. The sensor design includes two consecutive steps; i) Au electrode surface functionalization for anti-CD81 Antibody and ii) EVs capture. The label-free detection of EVs was done via Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). The working linear range for the sensor was 102-109 EVs/ml with an LOD 77 EVs/mL and 379 EVs/ml for EIS and DPV based detection. A blood-abundant protein, RhD was used for the selectivity test. In order to assess the performance of the biosensor, the level of EVs secretion by the human breast cancer MCF-7 cell line was compared with enzyme-linked immunosorbent assays (ELISA) and Nanoparticle Tracking Analysis (NTA). Designed label-free electrochemical sensors utilized for quantification of EVs secretion enhancement due to CoCl2-induced hypoxia and 1.23 fold increase with respect to normoxic conditions was found.


Asunto(s)
Hipoxia de la Célula/fisiología , Vesículas Extracelulares/metabolismo , Espectroscopía Dieléctrica , Ensayo de Inmunoadsorción Enzimática , Humanos , Células MCF-7
13.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584680

RESUMEN

Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Modelos Biológicos , Enfermedades de la Piel/patología , Telomerasa/metabolismo , Experimentación Animal , Proliferación Celular , Células Cultivadas , Senescencia Celular , Enfermedad Crónica , Fibroblastos/química , Fibroblastos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fenotipo , Enfermedades de la Piel/genética , Cicatrización de Heridas
14.
Trends Mol Med ; 24(3): 242-256, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29449149

RESUMEN

Extracellular vesicles, in particular the subclass exosomes, are rapidly emerging as a novel therapeutic platform. However, currently very few clinical validation studies and no clearly defined manufacturing process exist. As exosomes progress towards the clinic for treatment of a vast array of diseases, it is important to define the engineering basis for their manufacture early in the development cycle to ensure they can be produced cost-effectively at the appropriate scale. We hypothesize that transitioning to defined manufacturing platforms will increase consistency of the exosome product and improve their clinical advancement as a new therapeutic tool. We present manufacturing technologies and strategies that are being implemented and consider their application for the transition from bench-scale to clinical production of exosomes.


Asunto(s)
Exosomas/química , Animales , Reactores Biológicos , Química Farmacéutica , Exosomas/fisiología , Humanos , Medicina Regenerativa , Tecnología Farmacéutica , Investigación Biomédica Traslacional/tendencias
15.
Biotechnol J ; 13(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29334181

RESUMEN

Human mesenchymal stromal cells (hMSCs) are excellent candidates for cell therapy but their expansion to desired clinical quantities can be compromised by ex vivo processing, due to differences between donor material and process variation. The aim of this article is to characterize growth kinetics of healthy baseline "reference" hMSCs using typical manual processing. Bone-marrow derived hMSCs from ten donors are isolated based on plastic adherence, expanded, and analyzed for their growth kinetics until passage 4. Results indicate that hMSC density decreases with overall time in culture (p < 0.001) but no significant differences are observed between successive passages after passage 1. In addition, fold increase in cell number dropped between passage 1 and 2 for three batches, which correlated to lower performance in total fold increase and expansion potential of these batches, suggesting that proliferative ability of hMSCs can be predicted at an early stage. An indicative bounded operating window is determined between passage 1 and 3 (PDL < 10), despite the high inter-donor variability present under standardized hMSC expansion conditions used. hMSC growth profile analysis will be of benefit to cell therapy manufacturing as a tool to predict culture performance and attainment of clinically-relevant yields, therefore stratifying the patient population based on early observation.


Asunto(s)
Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Mesenquimatosas/citología , Donantes de Tejidos , Adipogénesis , Adolescente , Células de la Médula Ósea/citología , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrogénesis , Medios de Cultivo/química , Humanos , Masculino , Osteogénesis
16.
J Biomater Appl ; 32(3): 295-310, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28750600

RESUMEN

The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti-Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue formation and the upregaulation of VEGF production can potentially support vascularization.


Asunto(s)
Sustitutos de Huesos/química , Huesos/citología , Cobalto/química , Óxidos/química , Fosfatos/química , Ingeniería de Tejidos/métodos , Titanio/química , Huesos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Vidrio/química , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Biotechnol Bioeng ; 114(6): 1241-1251, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28112406

RESUMEN

Tools that allow cost-effective screening of the susceptibility of cell lines to operating conditions which may apply during full scale processing are central to the rapid development of robust processes for cell-based therapies. In this paper, an ultra scale-down (USD) device has been developed for the characterization of the response of a human cell line to membrane-based processing, using just a small quantity of cells that is often all that is available at the early discovery stage. The cell line used to develop the measurements was a clinically relevant human fibroblast cell line. The impact was evaluated by cell damage on completion of membrane processing as assessed by trypan blue exclusion and release of intracellular lactate dehydrogenase (LDH). Similar insight was gained from both methods and this allowed the extension of the use of the LDH measurements to examine cell damage as it occurs during processing by a combination of LDH appearance in the permeate and mass balancing of the overall operation. Transmission of LDH was investigated with time of operation and for the two disc speeds investigated (6,000 and 10,000 rpm or ϵmax ≈ 1.9 and 13.5 W mL-1 , respectively). As expected, increased energy dissipation rate led to increased transmission as well as significant increases in rate and extent of cell damage. The method developed can be used to test the impact of varying operating conditions and cell lines on cell damage and morphological changes. Biotechnol. Bioeng. 2017;114: 1241-1251. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Asunto(s)
Separación Celular/instrumentación , Centrifugación/instrumentación , Fibroblastos/citología , Fibroblastos/fisiología , Citometría de Flujo/instrumentación , Ultrafiltración/instrumentación , Línea Celular , Separación Celular/métodos , Tamaño de la Célula , Supervivencia Celular/fisiología , Centrifugación/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Membranas Artificiales , Reología/instrumentación , Reología/métodos , Resistencia al Corte/fisiología , Estrés Mecánico , Ultrafiltración/métodos
18.
Proc Natl Acad Sci U S A ; 113(47): 13414-13419, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821771

RESUMEN

In the adult rodent brain, new neurons are born in two germinal regions that are associated with blood vessels, and blood vessels and vessel-derived factors are thought to regulate the activity of adult neural stem cells. Recently, it has been proposed that a vascular niche also regulates prenatal neurogenesis. Here we identify the mouse embryo hindbrain as a powerful model to study embryonic neurogenesis and define the relationship between neural progenitor cell (NPC) behavior and vessel growth. Using this model, we show that a subventricular vascular plexus (SVP) extends through a hindbrain germinal zone populated by NPCs whose peak mitotic activity follows a surge in SVP growth. Hindbrains genetically defective in SVP formation owing to constitutive NRP1 loss showed a premature decline in both NPC activity and hindbrain growth downstream of precocious cell cycle exit, premature neuronal differentiation, and abnormal mitosis patterns. Defective regulation of NPC activity was not observed in mice lacking NRP1 expression by NPCs, but instead in mice lacking NRP1 selectively in endothelial cells, yet was independent of vascular roles in hindbrain oxygenation. Therefore, germinal zone vascularization sustains NPC proliferation in the prenatal brain.


Asunto(s)
Vasos Sanguíneos/fisiología , Neurogénesis , Rombencéfalo/irrigación sanguínea , Rombencéfalo/embriología , Animales , Proliferación Celular , Autorrenovación de las Células , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitosis , Neovascularización Fisiológica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuropilina-1/metabolismo , Oxígeno/metabolismo , Factores de Tiempo
19.
Regen Med ; 11(5): 483-92, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27404768

RESUMEN

This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this 'may be difficult for cell-based medicinal products'. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates.


Asunto(s)
Células Madre Pluripotentes/trasplante , Medicina Regenerativa , Biotecnología/métodos , Biotecnología/tendencias , Humanos , Instalaciones Industriales y de Fabricación , Medicina Regenerativa/legislación & jurisprudencia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Reino Unido
20.
J Tissue Eng ; 7: 2041731415618342, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977284

RESUMEN

Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...