Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 12(1): 11, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303081

RESUMEN

Understanding drivers of space use by African elephants is critical to their conservation and management, particularly given their large home-ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement in human-elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community-owned wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking data from 49 elephants with spatial covariate information to compare elephant selection across these management zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time-of-day. Our results showed that the strongest selection by elephants was for closed-canopy forest and the strongest avoidance was for open-cover, but that selection behavior varied significantly by management zone and selection for cover was accentuated in human-dominated areas. When contrasting selection parameters according to strata, variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plasticity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection behavior was greatest between sexes, followed by time-of-day, then management zone and finally season (where seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cognitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African elephants and builds our capacity for both management and conservation.

2.
Sci Rep ; 12(1): 11064, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794166

RESUMEN

Expanding and intensifying anthropogenic land use is one of the greatest drivers of changes of biodiversity loss and political inequality worldwide. In the Greater Mara, Kenya, a trend of private land enclosure is currently happening, led by smallholders wishing to protect and uphold their land titles. Here we expand on previous work by Løvschal et al. quantifying the rapid, large-scale development of fencing infrastructure that began in 1985 but has increased by 170% from 2010 onwards. We provide fine-scale analysis of the spatial and temporal trends in fencing using high-resolution Sentinel-2 imagery. The formally unprotected regions have distinctly more fences than the rest of the Mara, one experiencing a 740% increase in fenced land in four years. Conservancies have an effect in stemming fencing but fences crop up within and along conservancy boundaries. We estimate the actual geographical coverage of the fences in the Mara to be 130,277 ha (19% of the total region) using an error margin of 8%, derived by calibrating our satellite mapping with ground-truth data. The study suggests the need for revising community-based eco-conservation efforts and pursuing a richer understanding of the socio-political and historical dynamics underlying this phenomenon.


Asunto(s)
Biodiversidad , Geografía , Kenia , Factores Socioeconómicos
3.
Sci Data ; 9(1): 8, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042854

RESUMEN

The savannas of the Kenya-Tanzania borderland cover >100,000 km2 and is one of the most important regions globally for biodiversity conservation, particularly large mammals. The region also supports >1 million pastoralists and their livestock. In these systems, resources for both large mammals and pastoralists are highly variable in space and time and thus require connected landscapes. However, ongoing fragmentation of (semi-)natural vegetation by smallholder fencing and expansion of agriculture threatens this social-ecological system. Spatial data on fences and agricultural expansion are localized and dispersed among data owners and databases. Here, we synthesized data from several research groups and conservation NGOs and present the first release of the Landscape Dynamics (landDX) spatial-temporal database, covering ~30,000 km2 of southern Kenya. The data includes 31,000 livestock enclosures, nearly 40,000 kilometres of fencing, and 1,500 km2 of agricultural land. We provide caveats and interpretation of the different methodologies used. These data are useful to answer fundamental ecological questions, to quantify the rate of change of ecosystem function and wildlife populations, for conservation and livestock management, and for local and governmental spatial planning.


Asunto(s)
Animales Salvajes , Biodiversidad , Pradera , Agricultura , Animales , Conservación de los Recursos Naturales , Bases de Datos Factuales , Kenia , Ganado , Mamíferos , Análisis Espacio-Temporal , Tanzanía
4.
J Anim Ecol ; 91(1): 112-123, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726278

RESUMEN

To conserve wide-ranging species in human-modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human-wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations. We analysed GPS data of 66 free-ranging elephants in the Serengeti-Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (<0.6% time in agriculture; 26% of population), sporadic (0.6%-3.8%; 34%), seasonal (3.9%-12.8%; 31%) and habitual (>12.8%; 9%). Sporadic and seasonal individuals represented two-thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals. Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders. Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human-wildlife coexistence.


Asunto(s)
Elefantes , Agricultura , Animales , Animales Salvajes , Conservación de los Recursos Naturales/métodos , Ecosistema , Percepción
5.
Curr Biol ; 31(11): 2437-2445.e4, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798431

RESUMEN

Over the last two millennia, and at an accelerating pace, the African elephant (Loxodonta spp. Lin.) has been threatened by human activities across its range.1-7 We investigate the correlates of elephant home range sizes across diverse biomes. Annual and 16-day elliptical time density home ranges8 were calculated by using GPS tracking data collected from 229 African savannah and forest elephants (L. africana and L. cyclotis, respectively) between 1998 and 2013 at 19 sites representing bushveld, savannah, Sahel, and forest biomes. Our analysis considered the relationship between home range area and sex, species, vegetation productivity, tree cover, surface temperature, rainfall, water, slope, aggregate human influence, and protected area use. Irrespective of these environmental conditions, long-term annual ranges were overwhelmingly affected by human influence and protected area use. Only over shorter, 16-day periods did environmental factors, particularly water availability and vegetation productivity, become important in explaining space use. Our work highlights the degree to which the human footprint and existing protected areas now constrain the distribution of the world's largest terrestrial mammal.9,10 A habitat suitability model, created by evaluating every square kilometer of Africa, predicts that 18,169,219 km2 would be suitable as elephant habitat-62% of the continent. The current elephant distribution covers just 17% of this potential range of which 57.4% falls outside protected areas. To stem the continued extirpation and to secure the elephants' future, effective and expanded protected areas and improved capacity for coexistence across unprotected range are essential.


Asunto(s)
Elefantes , África , Animales , Conservación de los Recursos Naturales , Ecosistema , Bosques , Humanos , Agua
6.
Ecol Appl ; 24(4): 593-601, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24988762

RESUMEN

The expansion of global communication networks and advances in animal-tracking technology make possible the real-time telemetry of positional data as recorded by animal-attached tracking units. When combined with continuous, algorithm-based analytical capability, unique opportunities emerge for applied ecological monitoring and wildlife conservation. We present here four broad approaches for algorithmic wildlife monitoring in real time--proximity, geofencing, movement rate, and immobility--designed to examine aspects of wildlife spatial activity and behavior not possible with conventional tracking systems. Application of these four routines to the real-time monitoring of 94 African elephants was made. We also provide details of our cloud-based monitoring system including infrastructure, data collection, and customized software for continuous tracking data analysis. We also highlight future directions of real-time collection and analysis of biological, physiological, and environmental information from wildlife to encourage further development of needed algorithms and monitoring technology. Real-time processing of remotely collected, animal biospatial data promises to open novel directions in ecological research, applied species monitoring, conservation programs, and public outreach and education.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/instrumentación , Animales , Animales Salvajes , Ecosistema , Especies en Peligro de Extinción , Monitoreo del Ambiente/métodos , Informática , Modelos Biológicos , Dinámica Poblacional , Investigación/instrumentación , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...