Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(29): 15870-15878, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33860605

RESUMEN

Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 µg mL-1 (approx. 1.6 µm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 µg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.


Asunto(s)
Antivirales/metabolismo , Heparina/metabolismo , Poliéster Pentosan Sulfúrico/metabolismo , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Antivirales/química , Chlorocebus aethiops , Heparina/química , Humanos , Simulación de Dinámica Molecular , Poliéster Pentosan Sulfúrico/química , Polímeros/química , Polímeros/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Electricidad Estática , Células Vero
2.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523846

RESUMEN

Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 µg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Nanopartículas/química , Neuraminidasa/química , Animales , Antivirales/farmacología , Sitios de Unión , Membrana Celular/metabolismo , Perros , Membrana Eritrocítica/virología , Humanos , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virión , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
3.
Small ; 16(47): e2004635, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33135314

RESUMEN

Multivalent binding inhibitors are a promising new class of antivirals that prevent virus infections by inhibiting virus binding to cell membranes. The design of these inhibitors is challenging as many properties, for example, inhibitor size and functionalization with virus attachment factors, strongly influence the inhibition efficiency. Here, virus binding inhibitors are synthesized, the size and functionalization of which are inspired by mucins, which are naturally occurring glycosylated proteins with high molecular weight (MDa range) and interact efficiently with various viruses. Hyperbranched polyglycerols (hPGs) with molecular weights ranging between 10 and 2600 kDa are synthesized, thereby hitting the size of mucins and allowing for determining the impact of inhibitor size on the inhibition efficiency. The hPGs are functionalized with sialic acids and sulfates, as suggested from the structure of mucins, and their inhibition efficiency is determined by probing the inhibition of influenza A virus (IAV) binding to membranes using various methods. The largest, mucin-sized inhibitor shows potent inhibition at pm concentrations, while the inhibition efficiency decreases with decreasing the molecular weight. Interestingly, the concentration-dependent IAV inhibition shows a biphasic behavior, which is attributed to differences in the binding affinity of the inhibitors to the two IAV envelope proteins, neuraminidase, and hemagglutinin.


Asunto(s)
Glicerol , Virus de la Influenza A , Mucinas , Polímeros , Acoplamiento Viral , Animales , Antivirales/farmacología , Membrana Celular/metabolismo , Membrana Celular/virología , Perros , Glicerol/síntesis química , Glicerol/metabolismo , Glicerol/farmacología , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Peso Molecular , Mucinas/química , Neuraminidasa/metabolismo , Polímeros/síntesis química , Polímeros/metabolismo , Polímeros/farmacología , Acoplamiento Viral/efectos de los fármacos
4.
Angew Chem Int Ed Engl ; 59(30): 12417-12422, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32441859

RESUMEN

Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand-receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK-II cells.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Ácido N-Acetilneuramínico/química , Nanogeles/química , Animales , Antivirales/química , Perros , Virus de la Influenza A/fisiología , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA