Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352486

RESUMEN

Introduction: Reduced brain energy metabolism, mTOR dysregulation, and extracellular amyloid-ß oligomer (xcAßO) buildup characterize AD; how they collectively promote neurodegeneration is poorly understood. We previously reported that xcAßOs inhibit N utrient-induced M itochondrial A ctivity (NiMA) in cultured neurons. We now report NiMA disruption in vivo . Methods: Brain energy metabolism and oxygen consumption were recorded in APP SAA/+ mice using two-photon fluorescence lifetime imaging and multiparametric photoacoustic microscopy. Results: NiMA is inhibited in APP SAA/+ mice before other defects are detected in these amyloid-ß-producing animals that do not overexpress APP or contain foreign DNA inserts into genomic DNA. GSK3ß signals through mTORC1 to regulate NiMA independently of mitochondrial biogenesis. Inhibition of GSK3ß with lithium or TWS119 stimulates NiMA in cultured human neurons, and mitochondrial activity and oxygen consumption in APP SAA mice. Conclusion: NiMA disruption in vivo occurs before histopathological changes and cognitive decline in APP SAA mice, and may represent an early stage in human AD.

2.
Sci Rep ; 12(1): 11938, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831321

RESUMEN

Mitochondria are the central organelles in cellular bio-energetics with key roles to play in energy metabolism and cell fate decisions. Fluorescence Lifetime Imaging microscopy (FLIM) is used to track metabolic changes by following the intrinsic co-enzymes NAD(P)H and FAD, present in metabolic pathways. FLIM records-lifetimes and the relative fractions of free (unbound) and bound states of NAD(P)H and FAD are achieved by multiphoton excitation of a pulsed femto-second infra-red laser. Optimization of multiphoton laser power levels is critical to achieve sufficient photon counts for correct lifetime fitting while avoiding phototoxic effects. We have characterized two photon (2p) laser induced changes at the intra-cellular level, specifically in the mitochondria, where damage was assessed at rising 2p laser average power excitation. Our results show that NAD(P)H-a2%-the lifetime-based enzyme bound fraction, an indicator of mitochondrial OXPHOS activity is increased by rising average power, while inducing changes in the mitochondria at higher power levels, quantified by different probes. Treatment response tracked by means of NAD(P)H-a2% can be confounded by laser-induced damage producing the same effect. Our study demonstrates that 2p-laser power optimization is critical by characterizing changes in the mitochondria at increasing laser average power.


Asunto(s)
Flavina-Adenina Dinucleótido , NAD , Flavina-Adenina Dinucleótido/metabolismo , Rayos Láser , Microscopía Fluorescente/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo
3.
Neurobiol Dis ; 169: 105737, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452786

RESUMEN

Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-ß oligomers (AßOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AßOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Superóxido Dismutasa-1 , Esclerosis Tuberosa , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitocondrias/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Esclerosis Tuberosa/enzimología , Esclerosis Tuberosa/genética
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493662

RESUMEN

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mitocondrias/patología , Mitofagia , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos , Masculino , Ratones , Mitocondrias/metabolismo
5.
J Biomed Opt ; 25(1): 1-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31920048

RESUMEN

Two-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to capture autofluorescence signals from cellular components to investigate dynamic physiological changes in live cells and tissues. Among these intrinsic fluorophores, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD)-essential coenzymes in cellular respiration-have been used as intrinsic fluorescent biomarkers for metabolic states in cancer and other pathologies. Traditional FLIM imaging for NAD(P)H, FAD, and in particular fluorescence lifetime redox ratio (FLIRR) requires a sequential multiwavelength excitation to avoid spectral bleed-through (SBT). This sequential imaging complicates image acquisition, may introduce motion artifacts, and reduce temporal resolution. Testing several two-photon excitation wavelengths in combination with optimized emission filters, we have proved a FLIM imaging protocol, allowing simultaneous image acquisition with a single 800-nm wavelength excitation for NADH and FAD with negligible SBT. As a first step, standard NADH and FAD single and mixed solutions were tested that mimic biological sample conditions. After these optimization steps, the assay was applied to two prostate cancer live cell lines: African-American (AA) and Caucasian-American (LNCaP), used in our previous publications. FLIRR result shows that, in cells, the 800-nm two-photon excitation wavelength is suitable for NADH and FAD FLIM imaging with negligible SBT. While NAD(P)H signals are decreased, sufficient photons are present for accurate lifetime fitting and FAD signals are measurably increased at lower laser power, compared with the common 890-nm excitation conditions. This single wavelength excitation allows a simplification of NADH and FAD FLIM imaging data analysis, decreasing the total imaging time. It also avoids motion artifacts and increases temporal resolution. This simplified assay will also make it more suitable to be applied in a clinical setting.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , NADP/metabolismo , Neoplasias de la Próstata/metabolismo , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Fluorescencia , Humanos , Masculino , Fotones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
6.
Methods Appl Fluoresc ; 8(2): 024001, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31972557

RESUMEN

Increasingly, the auto-fluorescent coenzymes NAD(P)H and FAD are being tracked by multi-photon fluorescence lifetime microscopy (FLIM) and used as versatile markers for changes in mammalian metabolism. The cellular redox state of different cell model systems, organoids and tissue sections is investigated in a range of pathologies where the metabolism is disrupted or reprogrammed; the latter is particularly relevant in cancer biology. Yet, the actual optimized process of acquiring images by FLIM, execute a correct lifetime fitting procedure and subsequent processing and analysis can be challenging for new users. Questions remain of how to optimize FLIM experiments, whether any potential photo-bleaching affects FLIM results and whether fixed specimens can be used in experiments. We have broken down the multi-step sequence into best-practice application of FLIM for NAD(P)H and FAD imaging, with images generated by a time-correlated-single-photon-counting (TCSPC) system, fitted with Becker & Hickl software and further processed with open-source ImageJ/Fiji and Python software.


Asunto(s)
Flavina-Adenina Dinucleótido/química , Microscopía Fluorescente/métodos , NAD/química , Imagen Óptica/métodos , Humanos
7.
J Alzheimers Dis ; 71(4): 1125-1138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31524157

RESUMEN

Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-ß oligomers (AßOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AßOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aß and tau at seminal stages of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Agregación Patológica de Proteínas , Proteínas tau/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Sitios de Unión , Células Cultivadas , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Microtúbulos/fisiología , Neuronas/fisiología , Pliegue de Proteína , Respuesta de Proteína Desplegada/fisiología
8.
Cytometry A ; 95(1): 110-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30604477

RESUMEN

Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Mitocondrias/metabolismo , NADP/análisis , NAD/análisis , Triptófano/química , Citosol/efectos de los fármacos , Citosol/metabolismo , Doxorrubicina/farmacología , Metabolismo Energético/efectos de los fármacos , Flavina-Adenina Dinucleótido/análisis , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Mitocondrias/efectos de los fármacos , NAD/efectos de los fármacos , NADP/efectos de los fármacos , Imagen Óptica , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual/métodos
9.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348864

RESUMEN

The mechanisms of mitochondrial dysfunction in Alzheimer's disease are incompletely understood. Using two-photon fluorescence lifetime microscopy of the coenzymes, NADH and NADPH, and tracking brain oxygen metabolism with multi-parametric photoacoustic microscopy, we show that activation of lysosomal mechanistic target of rapamycin complex 1 (mTORC1) by insulin or amino acids stimulates mitochondrial activity and regulates mitochondrial DNA synthesis in neurons. Amyloid-ß oligomers, which are precursors of amyloid plaques in Alzheimer's disease brain and stimulate mTORC1 protein kinase activity at the plasma membrane but not at lysosomes, block this Nutrient-induced Mitochondrial Activity (NiMA) by a mechanism dependent on tau, which forms neurofibrillary tangles in Alzheimer's disease brain. NiMA was also disrupted in fibroblasts derived from two patients with tuberous sclerosis complex, a genetic disorder that causes dysregulation of lysosomal mTORC1. Thus, lysosomal mTORC1 couples nutrient availability to mitochondrial activity and links mitochondrial dysfunction to Alzheimer's disease by a mechanism dependent on the soluble building blocks of the poorly soluble plaques and tangles.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Esclerosis Tuberosa/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/genética , Lisosomas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/patología , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología
10.
Sci Rep ; 8(1): 79, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311591

RESUMEN

Multiphoton FLIM microscopy offers many opportunities to investigate processes in live cells, tissue and animal model systems. For redox measurements, FLIM data is mostly published by cell mean values and intensity-based redox ratios. Our method is based entirely on FLIM parameters generated by 3-detector time domain microscopy capturing autofluorescent signals of NAD(P)H, FAD and novel FLIM-FRET application of Tryptophan and NAD(P)H-a2%/FAD-a1% redox ratio. Furthermore, image data is analyzed in segmented cells thresholded by 2 × 2 pixel Regions of Interest (ROIs) to separate mitochondrial oxidative phosphorylation from cytosolic glycolysis in a prostate cancer cell line. Hundreds of data points allow demonstration of heterogeneity in response to intervention, identity of cell responders to treatment, creating thereby different sub-populations. Histograms and bar charts visualize differences between cells, analyzing whole cell versus mitochondrial morphology data, all based on discrete ROIs. This assay method allows to detect subtle differences in cellular and tissue responses, suggesting an advancement over means-based analyses.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , NADP/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Oxidación-Reducción , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Glucosa/metabolismo , Xenoinjertos , Humanos , Microscopía Fluorescente , Mitocondrias/metabolismo , Imagen Molecular , Neoplasias/patología , Fosforilación Oxidativa
11.
Sci Rep ; 7(1): 10451, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874842

RESUMEN

Prostate cancer (PCa) is one of the leading cancers in men in the USA. Lack of experimental tools that predict therapy response is one of the limitations of current therapeutic regimens. Mitochondrial dysfunctions including defective oxidative phosphorylation (OXPHOS) in cancer inhibit apoptosis by modulating ROS production and cellular signaling. Thus, correction of mitochondrial dysfunction and induction of apoptosis are promising strategies in cancer treatment. We have used Fluorescence Lifetime Imaging Microscopy (FLIM) to quantify mitochondrial metabolic response in PCa cells by tracking auto-fluorescent NAD(P)H, FAD and tryptophan (Trp) lifetimes and their enzyme-bound fractions as markers, before and after treatment with anti-cancer drug doxorubicin. A 3-channel FLIM assay and quantitative analysis of these markers for cellular metabolism show in response to doxorubicin, NAD(P)H mean fluorescence lifetime (τm) and enzyme-bound (a2%) fraction increased, FAD enzyme-bound (a1%) fraction was decreased, NAD(P)H-a2%/FAD-a1% FLIM-based redox ratio and ROS increased, followed by induction of apoptosis. For the first time, a FRET assay in PCa cells shows Trp-quenching due to Trp-NAD(P)H interactions, correlating energy transfer efficiencies (E%) vs NAD(P)H-a2%/FAD-a1% as sensitive parameters in predicting drug response. Applying this FLIM assay as early predictor of drug response would meet one of the important goals in cancer treatment.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Masculino , Microscopía Fluorescente , NADP/metabolismo , Imagen Óptica , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Triptófano/metabolismo
12.
Alzheimers Dement ; 13(2): 152-167, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27693185

RESUMEN

A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-ß oligomers (AßOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AßO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AßOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AßOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.


Asunto(s)
Ciclo Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neuronas/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Humanos , Hidrocéfalo Normotenso/metabolismo , Insulina/metabolismo , Lisosomas/metabolismo , Ratones Noqueados , Persona de Mediana Edad , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Cytometry A ; 87(6): 580-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25755111

RESUMEN

Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Citoesqueleto de Actina/fisiología , Animales , Línea Celular , Perros , Células de Riñón Canino Madin Darby , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Transducción de Señal
14.
Methods ; 66(2): 153-61, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23791767

RESUMEN

Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail.


Asunto(s)
Axones/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , ARN Mensajero/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Inmunohistoquímica , Microscopía Confocal , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Transporte de ARN , Ratas , Células de Schwann/metabolismo
15.
Cytoskeleton (Hoboken) ; 70(12): 819-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24124181

RESUMEN

IQGAP1 stimulates branched actin filament nucleation by activating N-WASP, which then activates the Arp2/3 complex. N-WASP can be activated by other factors, including GTP-bound Cdc42 or Rac1, which also bind IQGAP1. Here we report the use of purified proteins for in vitro binding and actin polymerization assays, and Förster (or fluorescence) resonance energy transfer (FRET) microscopy of cultured cells to illuminate functional interactions among IQGAP1, N-WASP, actin, and either Cdc42 or Rac1. In pyrene-actin assembly assays containing N-WASP and Arp2/3 complex, IQGAP1 plus either small G protein cooperatively stimulated actin filament nucleation by reducing the lag time before 50% maximum actin polymerization was reached. Similarly, Cdc42 and Rac1 modulated the binding of IQGAP1 to N-WASP in a dose-dependent manner, with Cdc42 enhancing the interaction and Rac1 reducing the interaction. These in vitro reconstitution results suggested that IQGAP1 interacts by similar, yet distinct mechanisms with Cdc42 versus Rac1 to regulate actin filament assembly through N-WASP in vivo. The physiological relevance of these multi-protein interactions was substantiated by 3-color FRET microscopy of live MDCK cells expressing various combinations of fluorescent N-WASP, IQGAP1, Cdc42, Rac1, and actin. This study also establishes 3-color FRET microscopy as a powerful tool for studying dynamic intermolecular interactions in live cells.


Asunto(s)
Proteínas Activadoras de ras GTPasa/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Bovinos , Perros , Transferencia Resonante de Energía de Fluorescencia , Humanos , Células de Riñón Canino Madin Darby , Microscopía Fluorescente/métodos , Unión Proteica , Conejos , Transducción de Señal , Proteínas Activadoras de ras GTPasa/química
16.
PLoS One ; 8(4): e61905, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23626749

RESUMEN

To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , ARN/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Actinas/antagonistas & inhibidores , Actinas/genética , Animales , Transporte Biológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Comunicación Celular , Expresión Génica , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Células de Schwann/citología , Nervio Ciático/citología , Nervio Ciático/lesiones , Tiazolidinas/farmacología
17.
Am J Respir Cell Mol Biol ; 46(1): 63-70, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21816964

RESUMEN

S-Nitrosoglutathione (GSNO) reductase regulates cell signaling pathways relevant to asthma and protects cells from nitrosative stress. Recent evidence suggests that this enzyme may prevent human hepatocellular carcinoma arising in the setting of chronic hepatitis. We hypothesized that GSNO reductase may also protect the lung against potentially carcinogenic reactions associated with nitrosative stress. We report that wild-type Ras is S-nitrosylated and activated by nitrosative stress and that it is denitrosylated by GSNO reductase. In human lung cancer, the activity and expression of GSNO reductase are decreased. Further, the distribution of the enzyme (including its colocalization with wild-type Ras) is abnormal. We conclude that decreased activity of GSNO reductase could leave the human lung vulnerable to the oncogenic effects of nitrosative stress, as is the case in the liver. This potential should be considered when developing therapies that inhibit pulmonary GSNO reductase to treat asthma and other conditions.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Neoplasias Pulmonares/enzimología , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Aldehído Oxidorreductasas/biosíntesis , Aldehído Oxidorreductasas/genética , Animales , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Ratones , Nitratos/metabolismo , Nitrosación , Factores de Riesgo , Transfección , Proteínas ras/metabolismo
18.
Proc SPIE Int Soc Opt Eng ; 82262012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-23549657

RESUMEN

With traditional 2-color Förster Resonance Energy Transfer (FRET) microscopy, valuable quantitative analyses can be conducted. Correlations of donor (D), acceptor (A) and their ratios (D:A) with energy transfer efficiency (E%) or distance (r) allows measurement of changes between control and experimental samples; also, clustered vs. random assembly of cellular components can be differentiated. Essentially, only the above three parameters D, A and D:A vs. E% are the basis for these deductions. 3-color FRET uses the same basic parameters, but exponentially expands the opportunities to quantify interrelationships among 3 cellular components. We investigated a number of questions based on the results of a triple combination (F1-F2-F3) of TFP-NWASP/Venus-IQGAP1/mCherry-Actin - all involved in the nucleation of actin - to apply the extensive analysis assay possible with 3-color FRET. How do changing N-WASP or IQGAP1 fluorescence levels affect actin fluorescence? What is the effect on E% of NWASP-actin by IQGAP1 or E% of IQGAP1-actin by N-WASP? These and other questions are explored in the context of all proteins of interest being in FRET distance vs. any two in the absence of the third. 4 cases are compared based on bleed-through corrected FRET: (1) all 3 interact, (2) only F1-F3 and F2-F3 [not F1-F2], (3) only F1-F2 and F2-F3 interact [not F1-F3], (4) only F1-F2 and F1-F3 interact [not F2-F3]. Other than describing the methodology in detail, several biologically relevant results are presented showing how E% (i.e. distance), fluorescence levels and ratios are affected in each of the cases. These correlations can only be observed in a 3-fluorophore combination. 3-color FRET will greatly expand the investigative range of quantitative analysis for the life-science researcher.

19.
Chemphyschem ; 12(3): 462-74, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21344587

RESUMEN

Theodor Förster would have been 100 years old this year, and he would have been astounded to see the impact of his scientific achievement, which is still evolving. Combining his quantitative approach of (Förster) resonance energy transfer (FRET) with state-of-the-art digital imaging techniques allows scientists to breach the resolution limits of light (ca. 200 nm) in light microscopy. The ability to deduce molecular or particle distances within a range of 1-10 nm in real time and to prove or disprove interactions between two or more components is of vital interest to researchers in many branches of science. While Förster's groundbreaking theory was published in the 1940s, the availability of suitable fluorophores, instruments, and analytical tools spawned numerous experiments in the last 20 years, as demonstrated by the exponential increase in publications. These cover basic investigation of cellular processes and the ability to investigate them when they go awry in pathological states, the dynamics involved in genetics, and following events in environmental sciences and methods in drug screening. This review covers the essentials of Theodor Förster's theory, describes the elements for successful implementation of FRET microscopy, the challenges and how to overcome them, and a leading-edge example of how Förster's scientific impact is still evolving in many directions. While this review cannot possibly do justice to the burgeoning field of FRET microscopy, a few interesting applications such as threecolor FRET, which greatly expands the opportunities for investigating interactions of cellular components compared with the traditional two-color method, are described, and an extensive list of references is provided for the interested reader to access.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Calibración , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/historia , Transferencia Resonante de Energía de Fluorescencia/normas , Historia del Siglo XX , Historia del Siglo XXI , Microscopía Fluorescente/historia , Microscopía Fluorescente/instrumentación , Fotoblanqueo
20.
Biophys J ; 99(4): 1274-83, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20713013

RESUMEN

FRET technologies are now routinely used to establish the spatial relationships between two cellular components (A and B). Adding a third target component (C) increases the complexity of the analysis between interactions AB/BC/AC. Here, we describe a novel method for analyzing a three-color (ABC) FRET system called three-color spectral FRET (3sFRET) microscopy, which is fully corrected for spectral bleedthrough. The approach quantifies FRET signals and calculates the apparent energy transfer efficiencies (Es). The method was validated by measurement of a genetic (FRET standard) construct consisting of three different fluorescent proteins (FPs), mTFP, mVenus, and tdTomato, linked sequentially to one another. In addition, three 2-FP reference constructs, tethered in the same way as the 3-FP construct, were used to characterize the energy transfer pathways. Fluorescence lifetime measurements were employed to compare the relative relationships between the FPs in cells producing the 3-FP and 2-FP fusion proteins. The 3sFRET microscopy method was then applied to study the interactions of the dimeric transcription factor C/EBPalpha (expressing mTFP or mVenus) with the heterochromatin protein 1alpha (HP1alpha, expressing tdTomato) in live-mouse pituitary cells. We show how the 3sFRET microscopy method represents a promising live-cell imaging technique to monitor the interactions between three labeled cellular components.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Algoritmos , Animales , Línea Celular , Supervivencia Celular , Homólogo de la Proteína Chromobox 5 , Ratones , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...