Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 939830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875349

RESUMEN

Many studies implicate microglia in the pathogenesis of Alzheimer's disease (AD) but precisely how these cells make their impact has not been determined to date. One contributory factor is likely to be the enhanced production of inflammatory mediators and it is now known that microglia with this secretory phenotype exhibit other adaptations including in their morphology, function, and metabolism. AD, like many neurological disorders, demonstrates a sex bias and recent evidence indicates that the sexual dimorphism in microglial function, which has been recognized for many years in early development, persists into adulthood and aging. Here, we demonstrate sex-related differences in microglia from post mortem tissue of male and female AD patients and a marked increase in the number of dystrophic and rod-shaped microglia in tissue from female AD patients compared with males. Furthermore, there was an increase in iron-laden microglia in tissue from female AD patients and this has been reported to reflect mitochondrial changes. To address this further, we assessed changes in microglia from male and female APP/PS1 mice and demonstrate that iron accumulation in microglia is increased to a greater extent in tissue prepared from females compared with males. This was associated with altered expression of genes coding for proteins that modulate mitochondrial function. The findings suggest that sex-related differences in the severity and perhaps incidence of AD may, at least in part, arise from sexual dimorphism in microglia.

2.
Cells ; 11(4)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203379

RESUMEN

There is a striking sex-related difference in the prevalence of many neurodegenerative diseases, highlighting the need to consider whether treatments may exert sex-specific effects. A change in microglial activation state is a common feature of several neurodegenerative diseases and is considered to be a key factor in driving the inflammation that characterizes these conditions. Among the changes that have been described is a switch in microglial metabolism towards glycolysis which is associated with production of inflammatory mediators and reduced function. Marked sex-related differences in microglial number, phenotype and function have been described in late embryonic and early postnatal life in rodents and some reports suggest that sexual dimorphism extends into adulthood and age and, in models of Alzheimer's disease, the changes are more profound in microglia from female, compared with male, mice. Dimethyl fumarate (DMF) is a fumaric acid ester used in the treatment of psoriasis and relapsing remitting multiple sclerosis and, while its mechanism of action is unclear, it possesses anti-inflammatory and anti-oxidant properties and also impacts on cell metabolism. Here we treated 16-18-month-old female and male mice with DMF for 1 month and assessed its effect on microglia. The evidence indicates that it exerted sex-specific effects on microglial morphology and metabolism, reducing glycolysis only in microglia from female mice. The data suggest that this may result from its ability to inactivate glyceraldehyde-3-phosphate dehydrogenase (GAPDH).


Asunto(s)
Dimetilfumarato , Esclerosis Múltiple Recurrente-Remitente , Animales , Dimetilfumarato/metabolismo , Femenino , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Microglía/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA