Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678829

RESUMEN

Nanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model. The NPs permeability across a cell barrier and their effects on cell barrier integrity and cell viability were evaluated. The properties of these NPs, as determined in water (traditional) vs. media (realistic), were compared to cell responses. It was found that for all cellular activities, NP properties determined in media was the best predictor of the cell response. Notably, ZnO NPs caused significant alterations to cell viability across all 3 cell lines tested. Importantly, we report that the zeta potential of NPs correlates significantly with NP permeability and NP-induced changes in cell viability. NPs with physiological-based zeta potential of -12 mV result in good cell barrier penetration without considerable changes in cell viability.

2.
Biochem Biophys Rep ; 27: 101096, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34401532

RESUMEN

Assessing the ability of pharmaceutics to cross biological barriers and reach the site-of-action requires faithful representation of these barriers in vitro. Difficulties have arisen in replicating in vivo resistance in vitro. This paper investigated serum starvation as a method to increase Caco-2 barrier stability and resistance. The effect of serum starvation on tight junction production was examined using transwell models; specifically, transendothelial electrical resistance (TEER), and the expression and localization of tight junction proteins, occludin and zonula occludens-1 (ZO-1), were studied using western blotting and immunofluorescence. Changing cells to serum-free media 2 days post-seeding resulted in TEER readings of nearly 5000 Ω cm2 but the TEER rapidly declined subsequently. Meanwhile, exchanging cells to serum-free media 4-6 days post-seeding produced barriers with resistance readings between 3000 and 4000 Ω cm2, which could be maintained for 18 days. This corresponded to an increase in occludin levels. Serum starvation as a means of barrier formation is simple, reproducible, and cost-effective. It could feasibly be implemented in a variety of pre-clinical pharmaceutical assessments of drug permeability across various biological barriers with the view to improving the clinical translation of novel therapeutics.

3.
Acta Biomater ; 134: 388-400, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314888

RESUMEN

The cranial meninges have been shown to play a pivotal role in traumatic brain injury mechanopathology. However, while the mechanical response of the brain and its many subregions have been studied extensively, the meninges have conventionally been overlooked. This paper presents the first comparative mechanical analysis of human dura mater, falx cerebri and superior sagittal sinus tissues. Biaxial tensile analysis identified that these tissues are mechanically heterogeneous, in contrast to the assumption that the tissues are mechanically homogeneous which is typically employed in FE model design. A thickness of 0.91 ± 0.05 (standard error) mm for the falx cerebri was also identified. This data can aid in improving the biofidelity of the influential falx structure in FE models. Additionally, the use of a collagen hybridizing peptide on the superior sagittal sinus suggests this structure is particularly susceptible to the effects of circumferential stretch, which may have important implications for clinical treatment of dural venous sinus pathologies. Collectively, this research progresses understanding of meningeal mechanical and structural characteristics and may aid in elucidating the behaviour of these tissues in healthy and diseased conditions. STATEMENT OF SIGNIFICANCE: This study presents the first evaluation of human falx cerebri and superior sagittal sinus mechanical, geometrical and structural properties, along with a comparison to cranial dura mater. To mechanically characterise the tissues, biaxial tensile testing is conducted on the tissues. This analysis identifies, for the first time, mechanical stiffness differences between these tissues. Additionally, geometrical analysis identifies that there are thickness differences between the tissues. The evaluation of human meningeal tissues allows for direct implementation of the novel data to finite element head injury models to enable improved biofidelity of these influential structures in traumatic brain injury simulations. This work also identifies that the superior sagittal sinus may be easily damaged during clinical angioplasty procedures, which may inform the treatment of dural sinus pathologies.


Asunto(s)
Duramadre , Seno Sagital Superior , Encéfalo , Senos Craneales , Humanos , Meninges
4.
J Neurotrauma ; 38(13): 1748-1761, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191848

RESUMEN

The meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues. Publications were identified from a search of Scopus, Academic Search Complete, and Web of Science and screened for eligibility according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review details the wide range of testing techniques employed to date and the significant variability in the observed experimental findings. Our findings identify many gaps in the current literature that can serve as a guide for future work for meningeal mechanics investigators. The review identifies no peer-reviewed mechanical data on the falx and tentorium tissues, both of which have been identified as key structures in influencing brain injury mechanics. A dearth of mechanical data for the pia-arachnoid complex also was identified (no experimental mechanics studies on the human pia-arachnoid complex were identified), which is desirable for biofidelic modeling of human head injuries. Finally, this review provides recommendations on how experiments can be conducted to allow for standardization of test methodologies, enabling simplified comparisons and conclusions on meningeal mechanics.


Asunto(s)
Aracnoides/fisiología , Fenómenos Biomecánicos/fisiología , Duramadre/fisiología , Piamadre/fisiología , Animales , Aracnoides/citología , Encéfalo/citología , Encéfalo/fisiología , Duramadre/citología , Humanos , Meninges/citología , Meninges/fisiología , Piamadre/citología
5.
Sci Rep ; 10(1): 21763, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303894

RESUMEN

The dural venous sinuses play an integral role in draining venous blood from the cranial cavity. As a result of the sinuses anatomical location, they are of significant importance when evaluating the mechanopathology of traumatic brain injury (TBI). Despite the importance of the dural venous sinuses in normal neurophysiology, no mechanical analyses have been conducted on the tissues. In this study, we conduct mechanical and structural analysis on porcine dural venous sinus tissue to help elucidate the tissues' function in healthy and diseased conditions. With longitudinal elastic moduli values ranging from 33 to 58 MPa, we demonstrate that the sinuses exhibit higher mechanical stiffness than that of native dural tissue, which may be of interest to the field of TBI modelling. Furthermore, by employing histological staining and a colour deconvolution protocol, we show that the sinuses have a collagen-dominant extracellular matrix, with collagen area fractions ranging from 84 to 94%, which likely explains the tissue's large mechanical stiffness. In summary, we provide the first investigation of the dural venous sinus mechanical behaviour with accompanying structural analysis, which may aid in understanding TBI mechanopathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/patología , Venas Cerebrales/fisiopatología , Senos Craneales/fisiopatología , Duramadre/irrigación sanguínea , Rigidez Vascular , Animales , Lesiones Traumáticas del Encéfalo/epidemiología , Venas Cerebrales/patología , Comorbilidad , Senos Craneales/patología , Modelos Animales de Enfermedad , Hematoma Subdural Agudo/epidemiología , Hematoma Subdural Agudo/etiología , Porcinos
6.
Mater Sci Eng C Mater Biol Appl ; 113: 110985, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487401

RESUMEN

Delivering therapeutics to disease sites is a challenge facing modern medicine. Nanoparticle delivery systems are of considerable interest to overcome this challenge, but these systems suffer from poor clinical translation. It is believed this is, in part, due to incomplete understanding of nanoparticle physico-chemical properties in vivo. To understand how nanoparticle properties could change following intravenous delivery, Au, Ag, Fe2O3, TiO2, and ZnO nanoparticles of 5, 20, and 50 nm were characterised in water and physiological fluids. The effects of the dispersion medium, concentration, and incubation time on size, dispersion, and zeta potential were measured. Properties varied significantly depending on material type, size, and concentration over 24 h. Gold and silver nanoparticles were generally the most stable. Meanwhile, 20 nm nanoparticles appeared to be the least stable size, across materials. These results could have important implications for selecting nanoparticles for drug delivery that will elicit the desired physiological response.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Medios de Cultivo/química , Compuestos Férricos/química , Oro/química , Humanos , Tamaño de la Partícula , Plata/química , Titanio/química , Agua/química , Óxido de Zinc/química
7.
BMJ Open Sport Exerc Med ; 6(1): e000948, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34422289

RESUMEN

INTRODUCTION: In professional rugby, sports-related concussion (SRC) remains the most frequent time loss injury. Therefore, accurately diagnosing SRC and monitoring player recovery, through a multi-modal assessment process, is critical to SRC management. In this protocol study, we aim to assess SRC over multiple time points post-injury to determine the value of multi-modal assessments to monitor player recovery. This is of significance to minimise premature return-to-play and, ultimately, to reduce the long-term effects associated with SRC. The study will also establish the logistics of implementing such a study in a professional setting to monitor a player's SRC recovery. METHODS AND ANALYSIS: All players from the participating professional rugby club within the Irish Rugby Football Union are invited to participate in the current study. Player assessment includes head injury assessment (HIA), neuropsychometric assessment (ImPACT), targeted biomarker analysis and untargeted biomarker analysis. Baseline HIA, ImPACT, and blood draws are performed prior to the start of playing season. During the baseline tests, player's complete consent forms and an SRC history questionnaire. Subsequently, any participant that enters the HIA process over the playing season due to a suspected SRC will be clinically assessed (HIA and ImPACT) and their blood will be drawn within 3 days of injury, 6 days post-injury, and 13 days post-injury. ETHICS AND DISSEMINATION: Ethical approval was attained from the Science and Engineering Research Ethics Committee, University of Limerick (Approval Code: 2018_06_11_S&E). On completion of the study, further manuscripts will be published to present the results of the tests and their ability to measure player recovery from SRC. TRIAL REGISTRATION NUMBER: NCT04485494.

8.
Acta Biomater ; 80: 237-246, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30208332

RESUMEN

The meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation. STATEMENT OF SIGNIFICANCE: This study addresses the lack of regional mechanical analysis of the cortical meninges, particularly the dura mater (DM), with accompanying biochemical analysis. To mechanically characterise the stiffness of the DM by region, uniaxial tensile testing was carried out on the DM tissue adjacent to the frontal, parietal, temporal and occipital lobes along with the DM tissue associated with the superior sagittal sinus. To the best of the authors' knowledge, the work presented here identifies, for the first time, the heterogeneous nature of the DM's mechanical stiffness by region. In particular, this study identifies the significant difference in the stiffness of the DM tissue associated with the superior sagittal sinus when compared to the other DM regions. Constitutive modelling was carried out on the regional mechanical testing data for implementation in Finite Element models with improved biofidelity. This work also presents the first biochemical analysis of the collagen I and III, elastin, and fibronectin content within DM tissue by region, providing useful insights into the accompanying macro-scale biomechanical data.


Asunto(s)
Corteza Cerebral/fisiología , Meninges/fisiología , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Duramadre/fisiología , Módulo de Elasticidad , Elastina/metabolismo , Fibronectinas/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...