Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(29): 16839-16847, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32641515

RESUMEN

Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, LPCTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 105 enrichment). Using soft iron-filled channels to act as magnetic microlenses, we intensify the field gradient within sorting channels. Increasing magnetic fields applied to inertially focused streams of cells effectively deplete massive numbers of magnetically labeled leukocytes within microfluidic channels. The negative depletion of antibody-tagged leukocytes enables isolation of potentially viable CTCs without bias for expression of specific tumor epitopes, making this platform applicable to all solid tumors. Thus, the initial enrichment by routine leukapheresis of mononuclear cells from very large blood volumes, followed by rapid flow, high-gradient magnetic sorting of untagged CTCs, provides a technology for noninvasive isolation of cancer cells in sufficient numbers for multiple clinical and experimental applications.


Asunto(s)
Separación Celular/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/clasificación , Línea Celular Tumoral , Separación Celular/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Leucaféresis/métodos , Campos Magnéticos , Microfluídica/instrumentación
2.
Lab Chip ; 20(3): 558-567, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31934715

RESUMEN

Circulating tumor cells (CTCs) are extremely rare in the blood, yet they account for metastasis. Notably, it was reported that CTC clusters (CTCCs) can be 50-100 times more metastatic than single CTCs, making them particularly salient as a liquid biopsy target. Yet they can split apart and are even rarer, complicating their recovery. Isolation by filtration risks loss when clusters squeeze through filter pores over time, and release of captured clusters can be difficult. Deterministic lateral displacement is continuous but requires channels not much larger than clusters, leading to clogging. Spiral inertial focusing requires large blood dilution factors (or lysis). Here, we report a microfluidic chip that continuously isolates untouched CTC clusters from large volumes of minimally (or undiluted) whole blood. An array of 100 µm-wide channels first concentrates clusters in the blood, and then a similar array transfers them into a small volume of buffer. The microscope-slide-sized PDMS device isolates individually-spiked CTC clusters from >30 mL per hour of whole blood with 80% efficiency into enumeration (fluorescence imaging), and on-chip yield approaches 100% (high speed video). Median blood cell removal (in base-10 logs) is 4.2 for leukocytes, 5.5 for red blood cells, and 4.9 for platelets, leaving less than 0.01% of leukocytes alongside CTC clusters in the product. We also demonstrate that cluster configurations are preserved. Gentle, high throughput concentration and separation of circulating tumor cell clusters from large blood volumes will enable cluster-specific diagnostics and speed the generation of patient-specific CTC cluster lines.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/patología , Voluntarios Sanos , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
3.
Clin Cancer Res ; 22(5): 1103-10, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26446944

RESUMEN

PURPOSE: The T790M gatekeeper mutation in the EGFR is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKI). As third-generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management. EXPERIMENTAL DESIGN: As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy. We compared the T790M genotype from tumor biopsies with analysis of simultaneously collected circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). RESULTS: T790M genotypes were successfully obtained in 30 (75%) tumor biopsies, 28 (70%) CTC samples, and 32 (80%) ctDNA samples. The resistance-associated mutation was detected in 47% to 50% of patients using each of the genotyping assays, with concordance among them ranging from 57% to 74%. Although CTC- and ctDNA-based genotyping were each unsuccessful in 20% to 30% of cases, the two assays together enabled genotyping in all patients with an available blood sample, and they identified the T790M mutation in 14 (35%) patients in whom the concurrent biopsy was negative or indeterminate. CONCLUSIONS: Discordant genotypes between tumor biopsy and blood-based analyses may result from technological differences, as well as sampling different tumor cell populations. The use of complementary approaches may provide the most complete assessment of each patient's cancer, which should be validated in predicting response to T790M-targeted inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Adulto , Afatinib , Anciano , Anciano de 80 o más Años , Biopsia , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/sangre , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Gefitinib , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Células Neoplásicas Circulantes/efectos de los fármacos , Quinazolinas/administración & dosificación
4.
Sci Transl Med ; 5(179): 179ra47, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23552373

RESUMEN

Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing-enhanced microfluidic CTC capture platform, termed "CTC-iChip," that is capable of sorting rare CTCs from whole blood at 10(7) cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Separación Celular/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Forma de la Célula , Tamaño de la Célula , Femenino , Humanos , Fenómenos Magnéticos , Masculino , ARN Neoplásico/metabolismo
5.
Cell Preserv Technol ; 3(3): 169-183, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16721425

RESUMEN

A new imaging device, termed a "cryomacroscope", is presented in this report. This device is designed to assist in exploring thermal and mechanical effects associated with large-scale vitrification and crystallization, with the current setup aimed at the range of 50 µm to 2 cm. The cryomacroscope is not intended as a substitute for the cryomicroscope, but as a complementary tool for the cryobiologist. A combination of cryomacroscopy and cryomicroscopy is suggested as a basis for multi-scale cryobiology studies. This report presents initial results on vitrification, crystallization, and fracture formation in the cryoprotectant cocktails DP6 and VS55. These results show some inconsistency in the tendency to form crystals, based on critical cooling and rewarming rates measured by means of a differential scanning calorimetric device (DSC) in parallel studies. This research is in its early stages, and comparative studies on biological materials are currently underway. Part II of this report (the companion paper) presents results for fracture formation in the cryoprotectant and discusses the mechanical stresses which promote these fractures. In conjunction with these reports, additional photos of cryomacroscopy of vitrification, crystallization, and fracture formation are available at http://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages01.htm.

6.
J Biomech Eng ; 126(2): 167-79, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15179846

RESUMEN

BACKGROUND: Experimental data and a complementary biophysical model are presented to describe the dynamic response of a unicellular microalga to osmotic processes encountered during cryopreservation. METHOD OF APPROACH: Chlorococcum texanum (C. texanum) were mounted on a cryoperfusion microscope stage and exposed sequentially to various solutions of sucrose and methanol. Transient volumetric excursions were determined by capturing images of cells in real time and utilizing image analysis software to calculate cell volumes. A biophysical model was applied to the data via inverse analysis in order to determine the plasma membrane permeability to water and to methanol. The data were also used to determine the elastic modulus of the cell wall and its effect on cell volume. A three-parameter (hydraulic conductivity (Lp), solute permeability; (omega), and reflection coefficient, (sigma)) membrane transport model was fit to data obtained during methanol perfusion to obtain constitutive property values. These results were compared with the property values obtained for a two coefficient (Lp and omega) model. RESULTS: The three-parameter model gave a value for sigma not consistent with practical physical interpretation. Thus, the two-coefficient model is the preferred approach for describing simultaneous water and methanol transport. The rate of both water and methanol transport were strongly dependent on temperature over the measured temperature range (25 degrees C to -5 degrees C) and cells were appreciably more permeable to methanol than to water at all measured temperatures. CONCLUSION: These results may explain in part why methanol is an effective cryoprotective agent for microalgae.


Asunto(s)
Chlorophyta/citología , Chlorophyta/metabolismo , Criopreservación/métodos , Metanol/farmacocinética , Modelos Biológicos , Agua/metabolismo , Transporte Biológico/fisiología , Permeabilidad de la Membrana Celular/fisiología , Tamaño de la Célula , Células Cultivadas , Simulación por Computador , Difusión , Presión Osmótica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
J Environ Qual ; 32(2): 607-12, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12708685

RESUMEN

Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.


Asunto(s)
Fertilizantes , Nitratos/análisis , Contaminantes del Suelo/análisis , Agricultura , Monitoreo del Ambiente , Solanum tuberosum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...