Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(6): eabj4633, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35138897

RESUMEN

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1, which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1. Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.

2.
BMC Res Notes ; 14(1): 433, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34838100

RESUMEN

OBJECTIVE: Overconsumption of processed foods has led to an increase in chronic diet-related diseases such obesity and type 2 diabetes. Although diets high in fresh fruits and vegetables are linked with healthier outcomes, the specific mechanisms for these relationships are poorly understood. Experiments examining plant phytochemical production and breeding programs, or separately on the health effects of nutritional supplements have yielded results that are sparse, siloed, and difficult to integrate between the domains of human health and agriculture. To connect plant products to health outcomes through their molecular mechanism an integrated computational resource is necessary. RESULTS: We created the Aliment to Bodily Condition Knowledgebase (ABCkb) to connect plants to human health by creating a stepwise path from plant [Formula: see text] plant product [Formula: see text] human gene [Formula: see text] pathways [Formula: see text] indication. ABCkb integrates 11 curated sources as well as relationships mined from Medline abstracts by loading into a graph database which is deployed via a Docker container. This new resource, provided in a queryable container with a user-friendly interface connects plant products with human health outcomes for generating nutritive hypotheses. All scripts used are available on github ( https://github.com/atrautm1/ABCkb ) along with basic directions for building the knowledgebase and a browsable interface is available ( https://abckb.charlotte.edu ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Bases de Datos Factuales , Humanos , Bases del Conocimiento , Fitomejoramiento , Verduras
3.
BMC Biol ; 17(1): 92, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757219

RESUMEN

BACKGROUND: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.


Asunto(s)
Avena/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Diploidia , Ligamiento Genético , Anotación de Secuencia Molecular , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...