Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645019

RESUMEN

Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying biochemical processes is lacking. Although AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on well curated datasets to train a Structure Prediction and Omics informed Classifier called SPOC that shows excellent performance in separating true and false PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ~40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High confidence PPIs discovered using our approach suggest novel hypotheses in genome maintenance. Our results provide a framework for interpreting large scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.

2.
Mol Cell ; 84(3): 404-408, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306999

RESUMEN

To celebrate the 50th anniversary of Cell Press and the Cell focus issue on structural biology, we discussed with scientists working across diverse fields how AlphaFold has changed their research and brought structural biology to the masses.


Asunto(s)
Aniversarios y Eventos Especiales , Biología Molecular
3.
Nat Commun ; 15(1): 1250, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341432

RESUMEN

Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Reparación del ADN , ADN Ligasas/metabolismo , ADN/genética , ADN/metabolismo
4.
Science ; 381(6664): eadi3448, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590370

RESUMEN

CDC45-MCM2-7-GINS (CMG) helicase assembly is the central event in eukaryotic replication initiation. In yeast, a multi-subunit "pre-loading complex" (pre-LC) accompanies GINS to chromatin-bound MCM2-7, leading to CMG formation. Here, we report that DONSON, a metazoan protein mutated in microcephalic primordial dwarfism, is required for CMG assembly in vertebrates. Using AlphaFold to screen for protein-protein interactions followed by experimental validation, we show that DONSON scaffolds a vertebrate pre-LC containing GINS, TOPBP1, and DNA pol ε. Our evidence suggests that DONSON docks the pre-LC onto MCM2-7, delivering GINS to its binding site in CMG. A patient-derived DONSON mutation compromises CMG assembly and recapitulates microcephalic dwarfism in mice. These results unify our understanding of eukaryotic replication initiation, implicate defective CMG assembly in microcephalic dwarfism, and illustrate how in silico protein-protein interaction screening accelerates mechanistic discovery.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Mantenimiento de Minicromosoma , Proteínas Nucleares , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Mapeo de Interacción de Proteínas/métodos , Simulación por Computador , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Enanismo/genética , Microcefalia/genética , Xenopus laevis
5.
Cell Rep ; 42(2): 112125, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807144

RESUMEN

Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Anticuerpos/metabolismo
6.
Mol Cell ; 83(1): 43-56.e10, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608669

RESUMEN

Endogenous and exogenous agents generate DNA-protein crosslinks (DPCs), whose replication-dependent degradation by the SPRTN protease suppresses aging and liver cancer. SPRTN is activated after the replicative CMG helicase bypasses a DPC and polymerase extends the nascent strand to the adduct. Here, we identify a role for the 5'-to-3' helicase FANCJ in DPC repair. In addition to supporting CMG bypass, FANCJ is essential for SPRTN activation. FANCJ binds ssDNA downstream of the DPC and uses its ATPase activity to unfold the protein adduct, which exposes the underlying DNA and enables cleavage of the adduct. FANCJ-dependent DPC unfolding is also essential for translesion DNA synthesis past DPCs that cannot be degraded. In summary, our results show that helicase-mediated protein unfolding enables multiple events in DPC repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Desplegamiento Proteico , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
7.
Nat Commun ; 13(1): 6591, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329031

RESUMEN

The p97 ATPase extracts polyubiquitylated proteins from diverse cellular structures in preparation for destruction by the proteasome. p97 functions with Ufd1-Npl4 and a variety of UBA-UBX co-factors, but how p97 complexes assemble on ubiquitylated substrates is unclear. To address this, we investigated how p97 disassembles the CMG helicase after it is ubiquitylated during replication termination. We show that p97Ufd1-Npl4 recruitment to CMG requires the UBA-UBX protein Ubxn7, and conversely, stable Ubxn7 binding to CMG requires p97Ufd1-Npl4. This cooperative assembly involves interactions between Ubxn7, p97, Ufd1-Npl4, and ubiquitin. Another p97 co-factor, Faf1, partially compensates for the loss of Ubxn7. Surprisingly, p97Ufd1-Npl4-Ubxn7 and p97Ufd1-Npl4-Faf1 also assemble cooperatively on unanchored ubiquitin chains. We propose that cooperative and substrate-independent recognition of ubiquitin chains allows p97 to recognize an unlimited number of polyubiquitylated proteins while avoiding the formation of partial, inactive complexes.


Asunto(s)
Replicación del ADN , Ubiquitina , Unión Proteica , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
Nature ; 605(7909): 357-365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508654

RESUMEN

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Asunto(s)
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinasas , Proteolisis , Fase S , Animales , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Nat Struct Mol Biol ; 29(5): 451-462, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35534579

RESUMEN

The 5-hydroxymethylcytosine binding, embryonic stem-cell-specific (HMCES) protein forms a covalent DNA-protein cross-link (DPC) with abasic (AP) sites in single-stranded DNA, and the resulting HMCES-DPC is thought to suppress double-strand break formation in S phase. However, the dynamics of HMCES cross-linking and whether any DNA repair pathways normally include an HMCES-DPC intermediate remain unknown. Here, we use Xenopus egg extracts to show that an HMCES-DPC forms on the AP site generated during replication-coupled DNA interstrand cross-link repair. We show that HMCES cross-links form on DNA after the replicative CDC45-MCM2-7-GINS (CMG) helicase has passed over the AP site, and that HMCES is subsequently removed by the SPRTN protease. The HMCES-DPC suppresses double-strand break formation, slows translesion synthesis past the AP site and introduces a bias for insertion of deoxyguanosine opposite the AP site. These data demonstrate that HMCES-DPCs form as intermediates in replication-coupled repair, and they suggest a general model of how HMCES protects AP sites during DNA replication.


Asunto(s)
Proteínas de Unión al ADN , ADN , ADN/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo
10.
Nucleic Acids Res ; 49(22): 13194-13206, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850944

RESUMEN

When vertebrate replisomes from neighboring origins converge, the Mcm7 subunit of the replicative helicase, CMG, is ubiquitylated by the E3 ubiquitin ligase, CRL2Lrr1. Polyubiquitylated CMG is then disassembled by the p97 ATPase, leading to replication termination. To avoid premature replisome disassembly, CRL2Lrr1 is only recruited to CMGs after they converge, but the underlying mechanism is unclear. Here, we use cryogenic electron microscopy to determine structures of recombinant Xenopus laevis CRL2Lrr1 with and without neddylation. The structures reveal that CRL2Lrr1 adopts an unusually open architecture, in which the putative substrate-recognition subunit, Lrr1, is located far from the catalytic module that catalyzes ubiquitin transfer. We further demonstrate that a predicted, flexible pleckstrin homology domain at the N-terminus of Lrr1 is essential to target CRL2Lrr1 to terminated CMGs. We propose a hypothetical model that explains how CRL2Lrr1's catalytic module is positioned next to the ubiquitylation site on Mcm7, and why CRL2Lrr1 binds CMG only after replisomes converge.


Asunto(s)
Replicación del ADN/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , ADN Helicasas/genética , ADN Helicasas/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
11.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108663

RESUMEN

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Asunto(s)
Daño del ADN , Reparación del ADN , Factor 1 de Elongación Peptídica/metabolismo , ARN Polimerasa II/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sistemas CRISPR-Cas , Línea Celular Tumoral , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Factor 1 de Elongación Peptídica/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/genética , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
Annu Rev Biochem ; 90: 107-135, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882259

RESUMEN

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/fisiología , Anemia de Fanconi/genética , Vertebrados/genética , Acetaldehído/metabolismo , Animales , ADN/química , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Replicación del ADN , Anemia de Fanconi/metabolismo , Humanos
13.
Mol Cell ; 81(6): 1309-1318.e6, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33484638

RESUMEN

DNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or "nicks," which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, "runs off" the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates along double-stranded DNA beyond the break and is then ubiquitylated and removed from chromatin by the same pathway used during replication termination. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they suggest that CMG cannot be stored on dsDNA while cells resolve replication stress.


Asunto(s)
Cromatina , Roturas del ADN de Cadena Simple , ADN Helicasas , Replicación del ADN , Ubiquitinación , Proteínas de Xenopus , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Sf9 , Spodoptera , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
Trends Cell Biol ; 31(2): 75-85, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33317933

RESUMEN

In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Mitosis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN Helicasas/química , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Xenopus laevis
16.
Genes Dev ; 34(21-22): 1534-1545, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32943574

RESUMEN

When converging replication forks meet during replication termination, the CMG (Cdc45-MCM2-7-GINS) helicase is polyubiquitylated by CRL2Lrr1 and unloaded from chromatin by the p97 ATPase. Here, we investigate the signal that triggers CMG unloading in Xenopus egg extracts using single-molecule and ensemble approaches. We show that converging CMGs pass each other and keep translocating at the same speed as before convergence, whereafter they are rapidly and independently unloaded. When CMG unloading is blocked, diverging CMGs do not support DNA synthesis, indicating that after bypass CMGs encounter the nascent lagging strands of the converging fork and then translocate along double-stranded DNA (dsDNA). However, translocation on dsDNA is not required for CMG's removal from chromatin because in the absence of nascent strand synthesis, converging CMGs are still unloaded. Moreover, recombinant CMG added to nuclear extract undergoes ubiquitylation and disassembly in the absence of any DNA, and DNA digestion triggers CMG ubiquitylation at stalled replication forks. Our findings suggest that DNA suppresses CMG ubiquitylation during elongation and that this suppression is relieved when CMGs converge, leading to CMG unloading.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Xenopus/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/química , ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitinación , Xenopus laevis/genética , Xenopus laevis/metabolismo
17.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32603710

RESUMEN

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Elongación Transcripcional/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Nucleosomas/metabolismo , Xenopus laevis
18.
Nat Commun ; 11(1): 2104, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355176

RESUMEN

The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Reparación del ADN , Humanos , Transcripción Genética , Rayos Ultravioleta , Xenopus laevis
19.
Cell Res ; 30(6): 459-460, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32346072
20.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862156

RESUMEN

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Inestabilidad Genómica , Animales , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Imagen Individual de Molécula , Factores de Tiempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...