RESUMEN
Malaria is a major public health challenge worldwide and requires accurate and efficient diagnostic methods. Traditional diagnostic approaches based on antigen-antibody interactions are associated with ethical and economic concerns. Molecularly imprinted polymers (MIPs) offer a promising alternative by providing a complementary polymer structure capable of selectively binding target molecules. In this study, we developed a liquid, redox-probe-free, MIP-based electrochemical biosensor to detect the Plasmodium falciparum malaria marker histidine-rich protein (HRP2) at the point-of-care (PoC). The imprinting phase consists of the electropolymerization of the monomer methylene blue (MB) in the presence of the target protein HRP2 at the working electrode (WE) of the modified carbon screen printed electrode (C-SPE). Subsequent removal of the protein with proteinase K and oxalic acid yielded the MIP material. The sensor assembly was monitored by cyclic voltammetry (CV), Raman spectroscopy and scanning electron microscopy (SEM). The analytical performance of the biosensor was evaluated by square-wave voltammetry (SWV) using calibration curves in buffer and serum with a detection limit of 0.43 ± 0.026 pg mL-1. Selectivity studies showed minimal interference, indicating a highly selective assay. Overall, our approach to detect the HRP2 infection marker offers simplicity, cost-effectiveness and reliability. In particular, the absence of a redox solution simplifies detection, as the polymer itself is electroactive and exhibits oxidation and reduction peaks.
RESUMEN
Community participation is a critical element in the management of Aedes aegypti and Aedes albopictus breeding sites. Many educational interventions have been conducted to encourage prevention and elimination of breeding sites among different community actors, such as government-run programs for vector surveillance aimed at preventing and eliminating breeding sites at the household level within a community. Getting people involved in prevention and elimination of vector breeding sites in their communities requires communication and social mobilization strategies to promote and reinforce those prevention actions that, in turn, should be effective from the entomological standpoint. Articles published in English, Spanish, and Portuguese, were reviewed to assess whether educational interventions targeting Ae. aegypti and Ae. albopictus were effective in reducing entomological indicators or in improving practices to prevent the presence of or eliminate breeding sites. The most widely used indicators were larval indices and the practices associated with reducing/eliminating breeding sites. We found that using a community-based approach adapted to eco-epidemiological and sociocultural scenarios explains the reduction of entomological indicators by educational interventions. Those who design or implement educational interventions should strengthen the evaluation of those interventions using qualitative approaches that provide a more complete picture of the social context and the barriers and facilitators to implementing vector control. Engaging school children in cross-sectorial collaboration involving the health and education spheres promotes the participation of the community in vector surveillance and reduces the risk of arboviral disease transmission.
Asunto(s)
Aedes , Control de Mosquitos , Mosquitos Vectores , Aedes/fisiología , Animales , Control de Mosquitos/métodos , Humanos , Cruzamiento , Larva , Educación en Salud/métodos , Participación de la ComunidadRESUMEN
The COVID-19 pandemic has emphasized the importance and urgent need for rapid and accurate diagnostic tests for detecting and screening this infection. Our proposal was to develop a biosensor based on an ELISA immunoassay for monitoring antibodies against SARS-CoV-2 in human serum samples. The nucleocapsid protein (N protein) from SARS-CoV-2 was employed as a specific receptor for the detection of SARS-CoV-2 nucleocapsid immunoglobulin G. N protein was immobilized on the surface of a screen-printed carbon electrode (SPCE) modified with carboxylated graphene (CG). The percentage of IgG-SARS-CoV-2 nucleocapsid present was quantified using a secondary antibody labeled with horseradish peroxidase (HRP) (anti-IgG-HRP) catalyzed using 3,3',5,5'-tetramethylbenzidine (TMB) mediator by chronoamperometry. A linear response was obtained in the range of 1:1000-1:200 v/v in phosphate buffer solution (PBS), and the detection limit calculated was 1:4947 v/v. The chronoamperometric method showed electrical signals directly proportional to antibody concentrations due to antigen-antibody (Ag-Ab) specific and stable binding reaction.
Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , Humanos , SARS-CoV-2 , Carbono , COVID-19/diagnóstico , Técnicas Biosensibles/métodos , Pandemias , Inmunoensayo/métodos , Nucleocápside , Electrodos , Anticuerpos AntiviralesRESUMEN
Molecularly imprinted membrane of ß-caryophyllene (MIM-ßCP) was fabricated incorporating ß-caryophyllene molecularly imprinted polymer nanoparticles (ßCP-NP) into polycaprolactone (PCL) fibers via electrospinning. The ßCP-NP were synthesized by precipitation polymerization using the ßCP as a template molecule and acrylic acid as a functional monomer in the proportion of 1:4 mol, respectively. Atomic force microscopy images and X-ray diffraction confirmed the nanoparticles' incorporation into MIM-ßCP. MIM-ßCP functionalization was evaluated by gas chromatography. The binding capacity was 1.80 ± 0.05 µmol/cm2, and the selectivity test was performed with a mixing solution of ßCP and caryophyllene oxide, as an analog compound, that extracted 77% of the ßCP in 5 min. The electrospun MIM-ßCP can be used to detect and extract the ßCP, applications in the molecular sieve, and biosensor production and may also contribute as an initial methodology to enhance versatile applications in the future, such as in the treatment of skin diseases, filters for extraction, and detection of ßCP to prevent counterfeiting of commercial products, and smart clothing with insect-repellent properties.
RESUMEN
BACKGROUND: Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES: This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS: The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS: The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS: The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.
Asunto(s)
Técnicas Biosensibles , Malaria Vivax , Malaria , Antígenos de Protozoos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Oro , Humanos , Inmunoensayo/métodos , L-Lactato Deshidrogenasa , Límite de Detección , Malaria Vivax/diagnóstico , Plasmodium vivaxRESUMEN
TiO2 time-dependent electrodeposited thin films were synthesized using an electrophoretic apparatus. The XRD analysis revealed that the films could exhibit a crystalline structure composed of ~81% anatase and ~6% rutile after 10 s of deposition, with crystallite size of 15 nm. AFM 3D maps showed that the surfaces obtained between 2 and 10 s of deposition exhibit strong topographical irregularities with long-range and short-range correlations being observed in different surface regions, a trend also observed by the Minkowski functionals. The height-based ISO, as well as specific surface microtexture parameters, showed an overall decrease from 2 to 10 s of deposition, showing a subtle decrease in the vertical growth of the films. The surfaces were also mapped to have low spatial dominant frequencies, which is associated with the similar roughness profile of the films, despite the overall difference in vertical growth observed. The electrical conductivity measurements showed that despite the decrease in topographical roughness, the films acquired a thickness capable of making them increasingly insulating from 2 to 10 s of deposition. Thus, our results prove that the deposition time used during the electrophoretic experiment consistently affects the films' structure, morphology, and electrical conductivity.
RESUMEN
Corner-truncated cubic ß-Ag1.94Cu0.06MoO4 microcrystals were synthesized using the hydrothermal method. These were investigated by X-ray diffraction, confirming obtention of the spinel structure Fd3Ì m. Through Raman spectroscopy are confirmed all modes for the point group of Oh7. The Egap shows a decrease of the band gap from 3.20 to 3.07 eV, with reduction of the conduction band occurring from -0.20 eV (ß-Ag2MoO4) to -0.13 eV (ß-Ag1.94Cu0.06MoO4), suggesting a p-type behavior for the Cu2+ ion. The field-emission scanning electron microscopy images confirm the morphological changes for ß-Ag2MoO4, where potato-like microcrystals were found. Meanwhile, corner-truncated cubic microcrystals for ß-Ag1.94Cu0.06MoO4. The photoluminescence (PL) spectrum confirms the increase in the PL emission for ß-Ag1.94Cu0.06MoO4, with suppression of the deep defects occurring in the structure caused by oxygen and silver atoms. In contrast, the green region is intensified because of distortions of the Ag-O and Mo-O bonds. Therefore, the ß-Ag1.94Cu0.06MoO4 solid solution has PL emission with CCT (4510 K) and CIE coordinates (x = 0.372 and y = 0.433), which could be interesting properties for applications as light-emitting diodes.
RESUMEN
BACKGROUND Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.
RESUMEN
BACKGROUND: Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo. RESULTS: All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding. CONCLUSIONS: Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.
Asunto(s)
Fusarium/patogenicidad , Interacciones Huésped-Patógeno/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Cromosomas de las Plantas , Colombia , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genéticaRESUMEN
ABSTRACT The interaction between plants and pathogens is a very dynamic and complex relationship that also includes a high degree of specificity, and it is precisely this last characteristic which triggers such important responses in the survival of one or the other. The pathosystem formed by tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici (Fol) has been the subject of multiple studies due to the importance of the vegetable worldwide and for the economic and ecological impact of the fungus responsible for the vascular wilt disease in tomato, causing losses that go up to 100%. One way to find alternatives for the management of any pathosystem is to know the actors involved and the mechanisms that govern the interaction through technological and scientific advances that clearly show how the interaction develops on a genetic level. This review collects the information from different scientific sources with focus on the knowledge of the fungus, tomato cultivation and plant defense applied to this pathosystem, as well as the molecular mechanisms.
RESUMEN La interacción entre plantas y patógenos es una relación muy dinámica y compleja, que conlleva un alto grado de especificidad y es esta última característica, la que desencadena respuestas tan importantes en la supervivencia de uno u otro. El patosistema formado por tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. lycopersici (Fol) ha sido objeto de múltiples estudios, debido a la importancia de la hortaliza, a nivel mundial y por el impacto económico y ecológico del hongo, responsable de la marchitez vascular, provocando pérdidas que llegan hasta el 100%. Una forma de encontrar alternativas para el manejo de cualquier patosistema es conocer los actores involucrados y los mecanismos que rigen la interacción, a través de avances tecnológicos y científicos, que muestren, claramente, cómo se desarrolla la interacción, a nivel genético. Esta revisión recoge la información de fuentes científicas con énfasis en el conocimiento del hongo, el cultivo del tomate y la defensa vegetal, aplicada a este patosistema, así como los mecanismos moleculares.
RESUMEN
The subgenus Culex L. includes species involved in summer-autumn arbovirus transmission but studies during winter are scarce in temperate Argentina. Female specimens were collected host-seeking at dry-ice-baited traps during autumn-winter-spring at two sites in Córdoba City during 2016 and 2017. The specimens were morphologically identified and dissected to determine the follicular developmental stage (gonotrophic activity). Females with advanced follicular stages (≥III) were subjected to molecular procedures to confirm or re-identify previous morphological identification. Five species (Culex apicinus Philippi (Diptera: Culicidae), Culex dolosus (Lynch-Arribálzaga) (Diptera: Culicidae), Culex maxi Dyar (Diptera: Culicidae), Culex pipiens pipiens L. (Diptera: Culicidae), and Culex quinquefasciatus Say (Diptera: Culicidae)) were collected and found gonoactive during winter; showing that a high proportion of Culex (Culex) females remain reproductively active during the unfavorable season for mosquito populations. Among them, it is worth noting the collection of Cx. quinquefasciatus, vector of the St. Louis encephalitis virus (endemic in the city), a specimen of Cx. p. pipiens, and a hybrid of Cx. p. pipiens/Cx. quinquefasciatus (during autumn). The study of this community during winter should continue because a high gonoactive female proportion with advanced follicular stages was found: 29.12 and 13.07% in 2016 and 2017, respectively. Local studies such as this one provide evidence about ornithophilic Culex species with active year-round life cycles, species that could favor arbovirus overwintering.
Asunto(s)
Culex/fisiología , Mosquitos Vectores/fisiología , Animales , Argentina , Femenino , Reproducción , Especificidad de la EspecieRESUMEN
In this paper, we introduced an advanced discussion of the 3D morphology of TiO2 coatings deposited on ITO substrate by electrodeposition under different deposition times. Atomic force microscopy was applied for obtaining topographic images of the samples. The images were processed using the MountainsMap 8.0 commercial software according to ISO 25178-2:2012. Moreover, fractal theory was applied to study the surface microtexture of coatings. The morphology was affected by the deposition time, where the grain size decreased with the increase of the time, making film's surfaces smoother. In addition, the surface roughness exhibited a random behaviour, but does not presented significant difference between samples. The fractal dimension showed similar values for all coatings. In contrast, surface texture isotropy also exhibited random behaviour. However, advanced fractal parameters revealed that when the deposition time increased, the coatings microtexture has become uniform and less porous. Furthermore, all coatings presented high topographic uniformity, regardless of deposition time. These results revealed that the morphology and microtexture of TiO2 -based coatings can be controlled by the deposition time. LAY DESCRIPTION: An advanced characterization on the micromorphology of 3D morphology, using AFM images, of Titanium dioxide (TiO2 ) coatings deposited on ITO substrate by electrodeposition under different deposition times. TiO2 is one of the most studied semiconductors to make photovoltaic devices. The versatility of this semiconductor is associated with low toxicity, high photochemical stability, abundance, and the facility to obtain by conventional synthesis routes. The obtention of a homogeneous and stable layer in the semiconductor TiO2 film deposition is a crucial stage in the assembly of sensitized photovoltaic devices. Atomic Force Microscopy (AFM) is a technique which can magnify up to a billion times and it uses a tip or probe which touches the sample surface point by point. The tip deflection is interpreted as the surface topography by the software, producing 2D or 3D images that generate several tribological parameters such as roughness in respect to a scanned area, has been a technique widely reported in the morphological characterization, determination of thickness, roughness, and particle size in thin films. Therefore, in this paper, the morphology was studied by atomic force microscopy using MountainsMap commercial software. The main goal was to study the influence of the deposition time on the morphology and microtexture of the material. New parameters such as surface entropy, fractal succolarity and fractal lacunarity were obtained for studying coatings microtexture's complexity.
RESUMEN
In this work, we report the room-temperature synthesis of pure calcium tungstate (CaWO4) and copper-doped calcium tungstate solid solution (Ca0.99Cu0.01WO4) by using a sonochemistry method. These materials were structurally characterized by X-ray diffraction (XRD) and Raman spectroscopy. The obtained XRD patterns were submitted to a Rietveld refinement showing, in both materials, a tetragonal phase with space group and point group of I41/a and C4h6, respectively. Microscopy images of both materials, obtained by field emission scanning electron microscopy, showed spherical agglomerated structures composed by spherical nanoparticles, while calcium and tungstate elements were identified by energy-dispersive X-ray spectroscopy for pure calcium tungstate and copper, calcium, and tungstate for Ca0.99Cu0.01WO4 solid solution. The decrease of optical band gap (Egap) from 4.0 eV (CaWO4) to 3.45 eV (Ca0.99Cu0.01WO4) confirmed the substitution of calcium atoms for copper atoms in the clusters [CaO8]. Maximum photoluminescence (PL) emission was shifted from 522 nm in the pure CaWO4 to 475 nm in the Ca0.99Cu0.01WO4 solid solution. Consequently, there was an increase of PL emissions intensity in the blue and green regions of the visible spectrum, due to electronic transitions between the orbitals O 2p, Cu 3d, and W 5d.
RESUMEN
Aedes aegypti (L.), the main vector of dengue and other arboviruses, was declared eradicated from Argentina in 1964; however, in 1987, it was detected again and nowadays it occurs in most of the country territory. To understand the transmission of vector-borne diseases, knowledge of the dispersal of vector populations is essential to evaluate the risk of pathogen transmission. We conducted a population genetic analysis of Ae. aegypti in 20 neighborhoods from Córdoba, the second largest city in Argentina, using 10 microsatellite loci. High genetic differentiation and the absence of an isolation by distance pattern was found using Weir and Cockerham's θ. Bayesian and multivariate clustering analyses showed that the studied sites included individuals with high membership coefficients (Q) in their populations, individuals with membership in another cluster, and admixed individuals. Individuals with high Q in clusters different from the population in which they were collected strongly suggests that passive transport is important in shaping the Ae. aegypti dispersal pattern in Córdoba city. Knowing the genetic structure of Ae. aegypti populations and their dispersal patterns would contribute to the implementation of vector control programs.
Asunto(s)
Aedes , Distribución Animal , Mosquitos Vectores , Animales , Argentina , Teorema de Bayes , Ciudades , Análisis Multivariante , FilogeografíaRESUMEN
PURPOSE: To compare the performance of universal adhesives containing different monomers, namely 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) and dipentaerythritol penta-acrylate monophosphate (PENTA), in the restoration of non-carious cervical lesions (NCCLs). METHODS: This was a randomized controlled clinical trial involving 63 subjects in need of restorations of 203 NCCLs. Notch-shaped lesions were restored with Kalore (GC Corporation) after application of Scotchbond Universal (SU) or Prime&Bond Elect (PBE) following the etch-and-rinse (ER) or self-etch (SE) technique. Restorations were assessed after 1 week, 18 and 36 months. Logistic regression was performed for each outcome separately with compound symmetric variance-covariance structure assumed to consider a correlation of restorations within subjects. All analyses were conducted using SAS 9.4 (SAS). RESULTS: 150 teeth in 41 subjects were assessed at 36 months. Three restorations in the PBE_SE group failed the retention criterium. Statistically significant differences were reached for the following comparisons: restorations with SU_SE were 75% less likely to maintain a score of Alfa for marginal discoloration than PBE_SE; restorations with PBE_SE were 83% less likely to maintain a score of Alfa for marginal adaptation than PBE_ER. CLINICAL SIGNIFICANCE: More than 20% of restorations restored with universal adhesives developed marginal degradation after 36 months. The impact of phosphoric acid on the restoration seems to be material-dependent.
Asunto(s)
Restauración Dental Permanente , Recubrimientos Dentinarios , Cuello del Diente , Adhesivos , Resinas Compuestas , Cementos Dentales , Adaptación Marginal Dental , Fracaso de la Restauración Dental , Humanos , Cementos de ResinaRESUMEN
This study evaluates the shear bond strength (SBS) of various resin cements to different ceramics. Composite resin cylinders of Z100 were fabricated and cemented to disks of feldspathic ceramic (Creation), leucite-reinforced feldspathic ceramic (Empress I), and densely sintered aluminum oxide ceramic (Procera AllCeram) using five resin cements: Panavia F (PAN), RelyX ARC (ARC), RelyX Unicem (RXU), RelyX Veneer, and Variolink II. SBS was measured after three days of water storage (baseline) and after artificial aging (180 days of water storage along with 12,000 thermal cycles). Failure mode of fractured specimens also was evaluated. Data were analyzed with Kruskal-Wallis and Mann-Whitney tests (α=0.05). RXU showed 1) the lowest baseline median SBS to feldspathic ceramic, which was not statistically different from PAN; 2) the lowest median baseline SBS to leucite-reinforced feldspathic and densely sintered aluminum-oxide ceramics. All cements performed similarly after aging, except for ARC (median 0.0 MPa) and PAN (median 16.2 MPa) in the densely sintered aluminum-oxide ceramic group. Resin cements perform differently when bonded to different ceramic substrates. While all test resin cements worked similarly in the long-term to feldspathic and leucite-reinforced feldspathic ceramics, only the MDP-containing resin cement provided durable bonds to densely sintered aluminum-oxide ceramic.
Asunto(s)
Cerámica/química , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Aluminio/química , Silicatos de Aluminio/química , Ensayo de Materiales , Compuestos de Potasio/química , Valores de Referencia , Reproducibilidad de los Resultados , Resistencia al Corte , Estadísticas no Paramétricas , Propiedades de SuperficieRESUMEN
PURPOSE: To evaluate the influence of sonic application on the surface roughness of bulk-fill resin composite restorations. METHODS: 80 intact bovine incisors had their incisal thirds removed, their buccal surfaces flattened, and standard preparations mimicking Class II preparations performed on their buccal surfaces. Specimens were then randomly assigned for restoration with the bulk-fill resin composites Tetric EvoCeram Bulk Fill, SureFil SDR flow+, and SonicFill 2, with sonic application for 15 seconds and 30 seconds as well as no sonic application. Filtek Supreme Ultra applied without sonic application served as control. Sonic application was accomplished with the KAVO SONICflex handpiece. Surface roughness was measured using a 3D scanner and data were analyzed using the Kruskal-Wallis and Mann-Whitney tests at a significance level of 0.05. RESULTS: No statistical differences were found between groups treated with and without sonic application. When materials were compared, Tetric EvoCeram Bulk Fill showed the lowest surface roughness in the 15-second sonic application subgroup; and SureFil SDR flow+ showed the highest surface roughness when applied without sonic application and in the 30-second sonic application subgroups. CLINICAL SIGNIFICANCE: Clinicians should expect a similar performance of bulk-fill resin composites in terms of surface roughness when applied with or without sonic activation. Precaution should be taken during the finishing/ polishing procedures of SureFil SDR flow+ resin composite.
Asunto(s)
Resinas Compuestas , Animales , Bovinos , Ensayo de Materiales , Distribución AleatoriaRESUMEN
Molecularly imprinted polymers provide an excellent platform for the modification of selective electrodes for sensing applications. Herein, we present a novel modified carbon paste electrode (CPE) with a selective molecularly imprinted polymer (MIP) for recognition of sesquiterpene ß-caryophyllene, constituted of important plants oil-resins and extracts. The non-covalent MIP was synthesized using AA, EGDMA, and AIBN as a functional monomer, cross-linker and initiator agent, respectively. Structural and chemical characterization of the synthesized MIP was conducted through scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was possible to verify the functional features of the synthesized MIP related to the extraction process of the template molecule. The CPE modified with MIP for sesquiterpene ß-caryophyllene recognition was characterized by electrochemical techniques as cyclic voltammetry (CV) and square wave voltammetry (SWV). The highest selective recognition electrode enables to detect concentrations in the range between 1.5â¯×â¯10-7 and 7.5â¯×â¯10-7â¯M, showing great potential for applications in monitoring content of sesquiterpene ß-caryophyllene in technological processes and for predicting the quality of extracts, oils, and resins of plants.
Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Polímeros/química , Sesquiterpenos/análisis , Antiinflamatorios no Esteroideos/química , Electrodos , Límite de Detección , Sesquiterpenos Policíclicos , Sesquiterpenos/químicaRESUMEN
Abstract This study evaluates the shear bond strength (SBS) of various resin cements to different ceramics. Composite resin cylinders of Z100 were fabricated and cemented to disks of feldspathic ceramic (Creation), leucite-reinforced feldspathic ceramic (Empress I), and densely sintered aluminum oxide ceramic (Procera AllCeram) using five resin cements: Panavia F (PAN), RelyX ARC (ARC), RelyX Unicem (RXU), RelyX Veneer, and Variolink II. SBS was measured after three days of water storage (baseline) and after artificial aging (180 days of water storage along with 12,000 thermal cycles). Failure mode of fractured specimens also was evaluated. Data were analyzed with Kruskal-Wallis and Mann-Whitney tests (α=0.05). RXU showed 1) the lowest baseline median SBS to feldspathic ceramic, which was not statistically different from PAN; 2) the lowest median baseline SBS to leucite-reinforced feldspathic and densely sintered aluminum-oxide ceramics. All cements performed similarly after aging, except for ARC (median 0.0 MPa) and PAN (median 16.2 MPa) in the densely sintered aluminum-oxide ceramic group. Resin cements perform differently when bonded to different ceramic substrates. While all test resin cements worked similarly in the long-term to feldspathic and leucite-reinforced feldspathic ceramics, only the MDP-containing resin cement provided durable bonds to densely sintered aluminum-oxide ceramic.
Asunto(s)
Cerámica/química , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Valores de Referencia , Propiedades de Superficie , Ensayo de Materiales , Reproducibilidad de los Resultados , Compuestos de Potasio/química , Estadísticas no Paramétricas , Resistencia al Corte , Aluminio/química , Silicatos de Aluminio/químicaRESUMEN
The aim of this study was to evaluate the antierosive effect of phosphorylated chitosan in dentin. Bovine dentin specimens were randomly distributed into the following groups: (1) no treatment (NoTx/negative control), (2) phosphate-buffered saline solution (PBS), (3) AmF/NaF/SnCl2 (positive control), (4) 0.5% chitosan solution (Chi), (5) 0.5% neutral phosphorylated (NP)-Chi, and (6) 0.5% alkaline phosphorylated (AP)-Chi. The specimens were submitted to de-remineralization treatment cycles for 5 days: 0.5% citric acid (2 min), remineralizing solution (30 min), and surface treatment according to assigned groups (2 min, 6×/day). The loss of dentin surface was measured by profilometry. Hardness and modulus of elasticity were measured using a nanoindenter equipped with a Berkovich diamond tip. The dentin surface was analyzed by scanning electron microscopy (SEM). The largest loss of dentin was observed in the No Tx and PBS groups (approx. 25 µm). The group treated with AmF/NaF/SnCl2 showed less loss of dentin (67% reduction vs. NoTx and PBS), followed by the groups treated with NP-Chi and AP-Chi (33% reduction), and Chi (18% reduction). Nanohardness and modulus of elasticity were similar in the NoTx and PBS groups, with a small increase in stiffness in all other groups. SEM revealed that the experimental solution of AP-Chi had a favorable effect on maintaining the integrity of collagen fibrils. AmF/NaF/SnCl2 showed a preserved mineralized collagen surface. Further studies are warranted to explore this nontoxic phosphorylated chitosan polymer as an effective agent in the prevention and treatment of dental erosion.