Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38817151

RESUMEN

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.

2.
Photosynth Res ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306001

RESUMEN

The homodimeric Type I reaction center (RC) from Heliomicrobium modesticaldum lacks the PsaC subunit found in Photosystem I and instead uses the interpolypeptide [4Fe-4S] cluster FX as the terminal electron acceptor. Our goal was to identify which of the small mobile dicluster ferredoxins encoded by the H. modesticaldum genome are capable of accepting electrons from the heliobacterial RC (HbRC) and pyruvate:ferredoxin oxidoreductase (PFOR), a key metabolic enzyme. Analysis of the genome revealed seven candidates: HM1_1462 (PshB1), HM1_1461 (PshB2), HM1_2505 (Fdx3), HM1_0869 (FdxB), HM1_1043, HM1_0357, and HM1_2767. Heterologous expression in Escherichia coli and studies using time-resolved optical spectroscopy revealed that only PshB1, PshB2, and Fdx3 are capable of accepting electrons from the HbRC and PFOR. Modeling studies using AlphaFold show that only PshB1, PshB2, and Fdx3 should be capable of docking on PFOR at a positively charged patch that overlays a surface-proximal [4Fe-4S] cluster. Proteomic analysis of wild-type and gene deletion strains ΔpshB1, ΔpshB2, ΔpshB1pshB2, and Δfdx3 grown under nitrogen-replete conditions revealed that Fdx3 is undetectable in the wild-type, ΔpshB1, and Δfdx3 strains, but it is present in the ΔpshB2 and ΔpshB1pshB2 strains, implying that Fdx3 may substitute for PshB2. When grown under nitrogen-deplete conditions, Fdx3 is present in the wild-type and all deletion strains except for Δfdx3. None of the knockout strains demonstrated significant impairment during chemotrophic dark growth on pyruvate, photoheterotrophic light growth on pyruvate, or phototrophic growth on acetate+CO2, indicating a high degree of redundancy among these three electron transfer proteins. Loss of both PshB1 and PshB2, but not FdxB, resulted in poor growth under N2-fixing conditions.

3.
Photosynth Res ; 143(2): 165-181, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31643016

RESUMEN

A methodology previously developed in our laboratory utilized an aliphatic hydrocarbon terminated by thiol groups to tether two redox proteins, i.e., the [4Fe-4S] cluster FB of photosystem I (PS I) and the distal [4Fe-4S] cluster of a [FeFe]-hydrogenase, to create a biohybrid dihydrogen-generating complex. These studies guided the design of a modified 2[4Fe-4S] cluster ferredoxin from Clostridium pasteurianum (CpFd) containing two externally facing cysteine residues in close proximity to each [4Fe-4S] cluster that replaces the aliphatic hydrocarbon dithiol tether. The advantage of using a protein is the potential to create a coupled dihydrogen-generating system in vivo. The wild-type CpFdWT and variants CpFdS11C/D40C, CpFdP20C/P49C, CpFdD7S/D36S, CpFdS11C/D40C/D7S/D36S and CpFdP20C/P49C/D7S/D36S were expressed in Escherichia coli and found to contain ~ 8 Fe and ~ 8 S atoms. The absorption spectra of the wild-type and CpFd variants displayed a peak centered at ~ 390 nm characteristic of a S → Fe charge transfer band that diminishes upon reduction with Na-dithionite. Low-temperature X-band EPR studies of the Na-dithionite-reduced wild-type and CpFd variants showed a complex spectrum indicative of two magnetically coupled [4Fe-4S]1+ clusters. EPR-monitored redox titrations of CpFdWT, CpFdD7S/D36S, CpFdS11C/D40C, CpFdP20C/P49C, CpFdS11C/D40C/D7S/D36S and CpFdP20C/P49C/D7S/D36S revealed redox potentials of - 412 ± 8 mV, - 395 ± 4 mV, - 408 ± 7 mV, - 426 ± 11 mV, - 384 ± 4 mV and - 423 ± 4 mV, respectively. The in vitro PS I-CpFdS11C/D40C/D7S/D36S-Pt nanoparticle complex was the highest performer, generating dihydrogen at a rate of 3.25 µmol H2 mg Chl-1 h-1 or 278.8 mol H2 mol PS I-1 h-1 under continuous illumination.


Asunto(s)
Clostridium/enzimología , Ferredoxinas/metabolismo , Nanopartículas del Metal/química , Complejo de Proteína del Fotosistema I/metabolismo , Platino (Metal)/metabolismo , Ferredoxinas/química , Hierro/metabolismo , Cinética , Nanopartículas del Metal/ultraestructura , Modelos Moleculares , Proteínas Mutantes/química , Oxidación-Reducción , Oxidorreductasas/metabolismo , Piruvatos/metabolismo , Análisis Espectral , Azufre/metabolismo , Temperatura
4.
Proc Natl Acad Sci U S A ; 116(51): 25917-25922, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801875

RESUMEN

Flavodoxins, electron transfer proteins essential for diverse metabolisms in microbes from the domain Bacteria, are extensively characterized. Remarkably, although genomic annotations of flavodoxins are widespread in microbes from the domain Archaea, none have been isolated and characterized. Herein is described the structural, biochemical, and physiological characterization of an unusual flavodoxin (FldA) from Methanosarcina acetivorans, an acetate-utilizing methane-producing microbe of the domain Archaea In contrast to all flavodoxins, FldA is homodimeric, markedly less acidic, and stabilizes an anionic semiquinone. The crystal structure reveals an flavin mononucleotide (FMN) binding site unique from all other flavodoxins that provides a rationale for stabilization of the anionic semiquinone and a remarkably low reduction potentials for both the oxidized/semiquinone (-301 mV) and semiquinone/hydroquinone couples (-464 mV). FldA is up-regulated in acetate-grown versus methanol-grown cells and shown here to substitute for ferredoxin in mediating the transfer of low potential electrons from the carbonyl of acetate to the membrane-bound electron transport chain that generates ion gradients driving ATP synthesis. FldA offers potential advantages over ferredoxin by (i) sparing iron for abundant iron-sulfur proteins essential for acetotrophic growth and (ii) resilience to oxidative damage.


Asunto(s)
Flavodoxina/química , Flavodoxina/metabolismo , Methanosarcina/metabolismo , Acetatos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Ferredoxinas/química , Ferredoxinas/metabolismo , Mononucleótido de Flavina/química , Flavodoxina/genética , Flavodoxina/aislamiento & purificación , Flavoproteínas/química , Calentamiento Global , Hidroquinonas , Metano/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
5.
Biochim Biophys Acta Bioenerg ; 1859(10): 1096-1107, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29959913

RESUMEN

Recently developed molecular wire technology takes advantage of [4Fe-4S] clusters that are ligated by at least one surface exposed Cys residue. Mutagenesis of this Cys residue to a Gly opens an exchangeable coordination site to a corner iron atom that can be chemically rescued by an external thiolate ligand. This ligand can be subsequently displaced by mass action using a dithiol molecular wire to tether two redox active proteins. We intend to apply this technique to tethering Photosystem I to ferredoxin sulfite reductase (FdSiR), an enzyme that catalyzes the six-electron reduction of sulfite to hydrogen sulfite and nitrite to ammonia. The enzyme contains a [4Fe-4S]2+/1+ cluster and a siroheme active site. FdSiRWT and an FdSiRC491G variant were cloned from Synechococcus elongatus PCC 7942 and expressed along with the cysG gene from Salmonella typhimurium using the pCDFDuet plasmid. UV/Vis absorbance spectra of both FdSiRWT and the FdSiRC491G variant displayed characteristic peaks at 278, 392 (Soret), 585 (α) and 714 nm (charge transfer band), and 278, 394 (Soret), 587 (α) and 714 nm (charge transfer band) respectively. Both enzymes in their as-isolated forms displayed an EPR spectrum characteristic of an S = 5/2 high spin heme. When reduced, both enzymes exhibited the signal of a low spin S = 1/2 [4Fe-4S]1+ cluster. The FdSiRWT and FdSiRC491G variant both showed activity using reduced methyl viologen and Synechococcus elongatus PCC 7942 ferredoxin 1 (Fd1) as electron donors. Based on these results, the FdSIRC491G variant should be a suitable candidate for wiring to Photosystem I.

6.
J Biol Chem ; 293(24): 9198-9209, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720404

RESUMEN

Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster. UV-visible, EPR, and Mössbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR, advancing the physiological understanding of FDR's role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show that FDR homologs are widespread in diverse microbes from the domain Bacteria.


Asunto(s)
Archaea/enzimología , Bacterias/enzimología , Disulfuros/metabolismo , Ferredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Methanosarcina/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas/metabolismo , Archaea/química , Archaea/metabolismo , Bacterias/química , Bacterias/metabolismo , Dominio Catalítico , Disulfuros/química , Transporte de Electrón , Ferredoxinas/química , Proteínas Hierro-Azufre/química , Methanosarcina/química , Methanosarcina/metabolismo , Modelos Moleculares , NADH NADPH Oxidorreductasas/química , Oxidación-Reducción , Oxidorreductasas/química , Spinacia oleracea/química , Spinacia oleracea/enzimología , Spinacia oleracea/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(10): 2774-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903622

RESUMEN

A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumulation in the mutant is not strictly the result of photodamage. Furthermore, PSI returns to nearly wild-type levels when the O2 concentration in the medium is lowered. Overall, our results suggest that the accumulation of PSI in the mutant correlates with the redox state of the stroma rather than photodamage and that CGL71 functions under atmospheric O2 conditions to allow stable assembly of PSI. These findings may reflect the history of the Earth's atmosphere as it transitioned from anoxic to highly oxic (1-2 billion years ago), a change that required organisms to evolve mechanisms to assist in the assembly and stability of proteins or complexes with O2-sensitive cofactors.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Immunoblotting , Cinética , Luz , Mutación , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Proteínas de las Membranas de los Tilacoides/genética , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...