Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(6): 1193-1202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781931

RESUMEN

Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.


Asunto(s)
Organoides , Priones , Enfermedad Debilitante Crónica , Enfermedad Debilitante Crónica/transmisión , Humanos , Priones/metabolismo , Animales , Encéfalo/patología , Genotipo
2.
Redox Biol ; 63: 102733, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172395

RESUMEN

Cellular prion protein (PrPC) protects neurons against oxidative stress damage. This role is lost upon its misfolding into insoluble prions in prion diseases, and correlated with cytoskeletal breakdown and neurophysiological deficits. Here we used mouse neuronal models to assess how PrPC protects the neuronal cytoskeleton, and its role in network communication, from oxidative stress damage. Oxidative stress was induced extrinsically by potassium superoxide (KO2) or intrinsically by Mito-Paraquat (MtPQ), targeting the mitochondria. In mouse neural lineage cells, KO2 was damaging to the cytoskeleton, with cells lacking PrPC (PrP-/-) damaged more than wild-type (WT) cells. In hippocampal slices, KO2 acutely inhibited neuronal communication in WT controls without damaging the cytoskeleton. This inhibition was not observed in PrP-/- slices. Neuronal communication and the cytoskeleton of PrP-/- slices became progressively disrupted and degenerated post-recovery, whereas the dysfunction in WT slices recovered in 5 days. This suggests that the acute inhibition of neuronal activity in WT slices in response to KO2 was a neuroprotective role of PrPC, which PrP-/- slices lacked. Heterozygous expression of PrPC was sufficient for this neuroprotection. Further, hippocampal slices from mice expressing PrPC without its GPI anchor (PrPGPI-/-) displayed acute inhibition of neuronal activity by KO2. However, they failed to restore normal activity and cytoskeletal formation post-recovery. This suggests that PrPC facilitates the depressive response to KO2 and its GPI anchoring is required to restore KO2-induced damages. Immuno spin-trapping showed increased radicals formed on the filamentous actin of PrP-/- and PrPGPI-/- slices, but not WT and PrP+/- slices, post-recovery suggesting ongoing dysregulation of redox balance in the slices lacking GPI-anchored PrPC. The MtPQ treatment of hippocampal slices temporarily inhibited neuronal communication independent of PrPC expression. Overall, GPI-anchored PrPC alters synapses and neurotransmission to protect and repair the neuronal cytoskeleton, and neuronal communication, from extrinsically induced oxidative stress damages.


Asunto(s)
Enfermedades por Prión , Priones , Ratones , Animales , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/metabolismo , Transmisión Sináptica , Neuronas/metabolismo , Modelos Animales de Enfermedad , Oxidación-Reducción
3.
Cell Tissue Res ; 392(1): 97-111, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088182

RESUMEN

Human cerebral organoids are an exciting and novel model system emerging in the field of neurobiology. Cerebral organoids are spheres of self-organizing, neuronal lineage tissue that can be differentiated from human pluripotent stem cells and that present the possibility of on-demand human neuronal cultures that can be used for non-invasively investigating diseases affecting the brain. Compared with existing humanized cell models, they provide a more comprehensive replication of the human cerebral environment. The potential of the human cerebral organoid model is only just beginning to be elucidated, but initial studies have indicated that they could prove to be a valuable model for neurodegenerative diseases such as prion disease. The application of the cerebral organoid model to prion disease, what has been learned so far and the future potential of this model are discussed in this review.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Enfermedades por Prión , Humanos , Encéfalo , Organoides
4.
Sci Rep ; 12(1): 15788, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138047

RESUMEN

Cardiomyopathy is a co-morbidity of some prion diseases including genetic disease caused by mutations within the PrP gene (PRNP). Although the cellular prion protein (PrP) has been shown to protect against cardiotoxicity caused by oxidative stress, it is unclear if the cardiomyopathy is directly linked to PrP dysfunction. We differentiated cardiomyocyte cultures from donor human induced pluripotent stem cells and found a direct influence of the PRNP E200K mutation on cellular function. The PRNP E200K cardiomyocytes showed abnormal function evident in the irregularity of the rapid repolarization; a phenotype comparable with the dysfunction reported in Down Syndrome cardiomyocytes. PRNP E200K cardiomyocyte cultures also showed increased mitochondrial superoxide accompanied by increased mitochondrial membrane potential and dysfunction. To confirm that the changes were due to the E200K mutation, CRISPR-Cas9 engineering was used to correct the E200K carrier cells and insert the E200K mutation into control cells. The isotype matched cardiomyocytes showed that the lysine expressing allele does directly influence electrophysiology and mitochondrial function but some differences in severity were apparent between donor lines. Our results demonstrate that cardiomyopathy in hereditary prion disease may be directly linked to PrP dysfunction.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Proteínas Priónicas , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/genética , Mutación , Miocitos Cardíacos/metabolismo , Proteínas Priónicas/genética , Superóxidos
5.
Mol Brain ; 14(1): 156, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635127

RESUMEN

The neuro-physiological properties of individuals with genetic pre-disposition to neurological disorders are largely unknown. Here we aimed to explore these properties using cerebral organoids (COs) derived from fibroblasts of individuals with confirmed genetic mutations including PRNPE200K, trisomy 21 (T21), and LRRK2G2019S, which are associated with Creutzfeldt Jakob disease, Down Syndrome, and Parkinson's disease. We utilized no known disease/healthy COs (HC) as normal function controls. At 3-4 and 6-10 months post-differentiation, COs with mutations showed no evidence of disease-related pathology. Electrophysiology assessment showed that all COs exhibited mature neuronal firing at 6-10 months old. At this age, we observed significant changes in the electrophysiology of the COs with disease-associated mutations (dCOs) as compared with the HC, including reduced neuronal network communication, slowing neuronal oscillations, and increased coupling of delta and theta phases to the amplitudes of gamma oscillations. Such changes were linked with the detection of hypersynchronous events like spike-and-wave discharges. These dysfunctions were associated with altered production and release of neurotransmitters, compromised activity of excitatory ionotropic receptors including receptors of kainate, AMPA, and NMDA, and changed levels and function of excitatory glutamatergic synapses and inhibitory GABAergic synapses. Neuronal properties that modulate GABAergic inhibition including the activity of Na-K-Cl cotransport 1 (NKCC1) in Cl- homeostasis and the levels of synaptic and extra-synaptic localization of GABA receptors (GABARs) were altered in the T21 COs only. The neurosteroid allopregnanolone, a positive modulator of GABARs, was downregulated in all the dCOs. Treatment with this neurosteroid significantly improved the neuronal communication in the dCOs, possibly through improving the GABAergic inhibition. Overall, without the manifestation of any disease-related pathology, the genetic mutations PRNPE200K, T21, and LRRK2G2019S significantly altered the neuronal network communication in dCOs by disrupting the excitatory-to-inhibitory balance.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/fisiopatología , Síndrome de Down/fisiopatología , Neuronas/fisiología , Organoides/fisiología , Enfermedad de Parkinson/fisiopatología , Potenciales de Acción , Ondas Encefálicas , Diferenciación Celular , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Down/genética , Síndrome de Down/patología , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Red Nerviosa/fisiología , Neuroesteroides/farmacología , Neurotransmisores/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Priónicas/genética , Receptores de Neurotransmisores/metabolismo , Sinapsis/metabolismo
6.
Sci Rep ; 11(1): 5165, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33727594

RESUMEN

Creutzfeldt-Jakob Disease (CJD) is a fatal, currently incurable, neurodegenerative disease. The search for candidate treatments would be greatly facilitated by the availability of human cell-based models of prion disease. Recently, an induced pluripotent stem cell derived human cerebral organoid model was shown to take up and propagate human CJD prions. This model offers new opportunities to screen drug candidates for the treatment of human prion diseases in an entirely human genetic background. Here we provide the first evidence that human cerebral organoids can be a viable model for CJD drug screening by using an established anti-prion compound, pentosan polysulfate (PPS). PPS delayed prion propagation in a prophylactic-like treatment paradigm and also alleviated propagation when applied following establishment of infection in a therapeutic-like treatment paradigm. This study demonstrates the utility of cerebral organoids as the first human 3D cell culture system for screening therapeutic drug candidates for human prion diseases.


Asunto(s)
Ventrículos Cerebrales/efectos de los fármacos , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Organoides/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Línea Celular , Ventrículos Cerebrales/patología , Síndrome de Creutzfeldt-Jakob/patología , Descubrimiento de Drogas/métodos , Humanos , Organoides/patología , Poliéster Pentosan Sulfúrico/farmacología
7.
Cell Rep ; 25(3): 663-676.e6, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332646

RESUMEN

A hallmark of aging is a decline in metabolic homeostasis, which is attenuated by dietary restriction (DR). However, the interaction of aging and DR with the metabolome is not well understood. We report that DR is a stronger modulator of the rat metabolome than age in plasma and tissues. A comparative metabolomic screen in rodents and humans identified circulating sarcosine as being similarly reduced with aging and increased by DR, while sarcosine is also elevated in long-lived Ames dwarf mice. Pathway analysis in aged sarcosine-replete rats identify this biogenic amine as an integral node in the metabolome network. Finally, we show that sarcosine can activate autophagy in cultured cells and enhances autophagic flux in vivo, suggesting a potential role in autophagy induction by DR. Thus, these data identify circulating sarcosine as a biomarker of aging and DR in mammalians and may contribute to age-related alterations in the metabolome and in proteostasis.


Asunto(s)
Envejecimiento/fisiología , Biomarcadores/análisis , Restricción Calórica , Longevidad , Metaboloma , Sarcosina/sangre , Adulto , Anciano , Animales , Estudios de Cohortes , Femenino , Homeostasis , Humanos , Masculino , Ratones , Persona de Mediana Edad , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
8.
Nat Commun ; 9(1): 2394, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921922

RESUMEN

Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Longevidad/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Receptor IGF Tipo 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/prevención & control , Receptor IGF Tipo 1/inmunología , Receptor IGF Tipo 1/metabolismo , Factores Sexuales , Carga Tumoral/efectos de los fármacos
9.
Chem Sci ; 8(9): 6601-6612, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29449933

RESUMEN

Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 µM h-1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z'-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...