Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 63(15): 3830-7, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25802948

RESUMEN

Biochar composting experiments were performed to determine whether composting is a suitable method to accelerate biochar surface oxidation for increasing its reactivity. To assess the results, surface properties of Terra Preta (Brazil) and ancient charcoal pit (Northern Italy) biochars were additionally investigated. Calculation of O/C ratios by energy-dispersive X-ray spectroscopy demonstrated the anticipated increasing values from fresh biochars (0.13) to composted biochars (0.40), and finally charcoal pit biochars (0.54) and ancient Terra Preta biochars (0.64). By means of Fourier transformation infrared microscopy, formation of carboxylic and phenolic groups on biochars surface could be detected. Carboxylic acids of three composted biochars increased up to 14%, whereas one composted biochar showed a 21% lower proportion of carboxylic acids compared to the corresponding fresh biochar. Phenolic groups increased by 23% for the last mentioned biochar, and on all other biochars phenolic groups decreased up to 22%. Results showed that biochar surface oxidation can be accelerated through composting but still far away from ancient biochars.


Asunto(s)
Carbón Orgánico/química , Suelo/química , Oxidación-Reducción , Espectrometría por Rayos X , Propiedades de Superficie
2.
Biol Trace Elem Res ; 122(3): 216-28, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18193173

RESUMEN

Zinc toxicity has been linked to cellular glutathione: A decrease in glutathione is followed by an increase in zinc-mediated toxicity. The question arises whether an increase in glutathione synthesis might decrease zinc-mediated cytotoxicity. We incubated five cell lines (hepatoma and lung-derived) with zinc chloride and 2 mmol/l N-acetyl-L-cysteine (NAC) to support glutathione synthesis. In all but one hepatic cell line, the glutathione content was increased by NAC as compared to the D-enantiomere NADC, whereas NADC did not increase GSH content as compared to not treated controls. In both alveolar epithelial cell lines, an increase in zinc tolerance was observed due to NAC as compared to NADC. In native fibroblast-like and the hepatoma cell lines, no changes in zinc tolerance were found due to NAC. In the fibroblast-like cells, zinc tolerance was increased due to NAC only after cellular glutathione had been previously decreased (by lowered cysteine concentrations in the medium). Enhancing glutathione synthesis can antagonize zinc-mediated toxicity in the alveolar epithelial cell lines, whereas some other characteristics than glutathione synthesis might be more important in other cell types. Furthermore, NAC acted as a GSH precursor only at cysteine medium concentrations of 10 micromol/l or below and therefore might be described as a poor cysteine repletor for glutathione synthesis.


Asunto(s)
Acetilcisteína/farmacología , Glutatión/metabolismo , Compuestos de Zinc/toxicidad , Línea Celular , Línea Celular Tumoral , Cisteína/farmacología , Glutatión/biosíntesis , Humanos , Hidrocortisona/farmacología , Metionina/metabolismo , Sustancias Reductoras/farmacología , Estereoisomerismo , Regulación hacia Arriba/efectos de los fármacos , Compuestos de Zinc/metabolismo
3.
Planta Med ; 71(6): 520-4, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15971122

RESUMEN

Quercetin is one of the dietary-derived flavonoids that are held responsible for the beneficial effects of red wine drinking in coronary artery disease known as the "French paradox". We examined whether quercetin modulates endothelial function by influencing Ca2+-activated K+ channels with large conductance (BK(Ca)) in cultured human endothelial cells. Membrane potential and intracellular Ca2+ concentrations of cultured human endothelial cells derived from umbilical cord veins (HUVEC) were measured using the fluorescence dyes DiBAC, and FURA-2, respectively. NO production was examined using a cGMP radioimmunoassay. HUVEC proliferation was analyzed by cell counts and thymidine incorporation. A dose-dependent hyperpolarization of HUVEC was recorded when quercetin was added (5-100 micromol/L). The maximum effect (50 micromol/L) was significantly reduced by the addition of the highly selective BK(Ca) inhibitor iberiotoxin (100 nmol/L), but not by blockers of other Ca2+-activated K+ channels (n = 30; p < 0.05). This BK(Ca)-induced hyperpolarization caused a transmembrane Ca2+ influx, because the quercetin-induced increase of intracellular Ca2+ was blocked by iberiotoxin, or by applying 2-aminoethoxydiphenylborate (100 micromol/L)--an inhibitor of capacitative Ca2+ entry (n = 30; p < 0.05). Quercetin-induced cGMP levels were significantly reduced by the eNOS-inhibitor l-NMMA (300 micromol/L), and by iberiotoxin (n = 10; p < 0.05). Endothelial proliferation was significantly reduced by 56 % when cells were incubated with quercetin (n = 12; p < 0.05). This effect was due to the increased NO production, because it was reversed when the cells were treated with a combination of quercetin and l-NMMA. In conclusion quercetin improves endothelial dysfunction by increasing NO synthesis involving BK(Ca)-dependent membrane hyperpolarization-induced capacitative Ca 2+ entry. Increased NO production is responsible for the quercetin-dependent inhibition of endothelial proliferation.


Asunto(s)
Calcio/metabolismo , Fitoterapia , Plantas Medicinales , Canales de Potasio Calcio-Activados/efectos de los fármacos , Quercetina/farmacología , División Celular/efectos de los fármacos , GMP Cíclico/biosíntesis , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Potenciales de la Membrana , Óxido Nítrico/biosíntesis , Canales de Potasio Calcio-Activados/fisiología , Quercetina/administración & dosificación , Quercetina/uso terapéutico
4.
Thromb Haemost ; 92(5): 1099-107, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15543339

RESUMEN

Ca(2+)-activated K(+) channels with large conductance (BK(Ca)) have been shown to play an important role in the regulation of vascular tone. We examined the role of the p42/p44 MAP-kinase (p42/p44(MAPK)) on nitric oxide (NO) production in human endothelial cells induced by the BK(Ca)-opener NS1619. Using DiBAC-fluorescence imaging a concentration-dependent (2.5-12.5 microM) hyperpolarization induced by NS1619 was observed. A significant increase of intracellular Ca(2+)-concentration by NS1619 was seen using Fura-2-fluorescence-imaging, which was blocked by 2-APB, or reduction of extracellular Ca(2+) (n=30; p<0.05). A cGMP-radioimmunoassay was used to examine NO synthesis. NS1619 significantly increased cGMP levels which was inhibited by LNMMA, iberiotoxin, BAPTA, 2-APB, reduction of extracellular Ca(2+), PD 98059, or U0126 (cGMP (pmol/mg protein): NS1619 3.25 +/- 0.85; NS1619 + L-NMMA 0.86 +/- 0.02; NS1619 + iberiotoxin 0.99 +/- 0.09; NS1619 + BAPTA 0.93 +/- 0.29; NS1619 + 2-APB 0.99 +/- 0.31; NS1619 + Ca(2+)-reduction 1.17 +/- 0.06; NS1619 + PD98059 1.06 +/- 0.49; NS1619 + U0126 1.10 +/- 0.24; n=10; p<0.05). The phosphorylation of eNOS and p42/p44(MAPK) was examined by immunocytochemistry. Phosphorylation of p42/p44(MAPK) was significantly increased after 10 minutes of NS1619 stimulation, whereas eNOS phosphorylation was not changed over a period of 1 to 30 minutes. NS1619-induced hyperpolarization was not affected by treatment with PD 98059 or U0126. Additionally, NS1619 inhibited endothelial proliferation involving a NO-dependent mechanism. Our data demonstrate that NS1619 causes a transmembrane Ca(2+)-influx leading to an increased NO production involving p42/p44(MAPK). This rise of NO formation is responsible for the NS1619 induced reduction of endothelial cell growth.


Asunto(s)
Bencimidazoles/farmacología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Óxido Nítrico/biosíntesis , Canales de Potasio Calcio-Activados/fisiología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III , Fosforilación , Canales de Potasio Calcio-Activados/efectos de los fármacos , Venas Umbilicales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...