Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065621

RESUMEN

PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the solubility enhancement of two PROTACs, ARV-110 and SelDeg51, using Poly(vinyl alcohol). Hereby, we apply a three-fluid nozzle spray drying set-up to generate an amorphous solid dispersion with a 30% w/w drug loading with the respective PROTACs and the hydrophilic polymer. Dissolution enhancement was achieved and demonstrated for t = 0 and t = 4 weeks at 5 °C using a phosphate buffer with a pH of 6.8. A pH shift study on ARV-110-PVA is shown, covering transfer from simulated gastric fluid (SGF) at pH 2.0 to fasted-state simulated intestinal fluid (FaSSIF) at pH 6.5. Additionally, activity studies and binding assays of the pure SelDeg51 versus the spray-dried SelDeg51-PVA indicate no difference between both samples. Our results show how modern enabling formulation technologies can partially alleviate challenging physicochemical properties, such as the poor solubility of increasingly large 'small' molecules.

2.
Polymers (Basel) ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891486

RESUMEN

The in-line control of curing during the molding process significantly improves product quality and ensures the reliability of packaging materials with the required thermo-mechanical and adhesion properties. The choice of the morphological and thermo-mechanical properties of the molded material, and the accuracy of their determination through carefully selected thermo-analytical methods, play a crucial role in the qualitative prediction of trends in packaging product properties as process parameters are varied. This work aimed to verify the quality of the models and their validation using a highly filled molding resin with an identical chemical composition but 10 wt% difference in silica particles (SPs). Morphological and mechanical material properties were determined by dielectric analysis (DEA), differential scanning calorimetry (DSC), warpage analysis and dynamic mechanical analysis (DMA). The effects of temperature and injection speed on the morphological properties were analyzed through the design of experiments (DoE) and illustrated by response surface plots. A comprehensive approach to monitor the evolution of ionic viscosity (IV), residual enthalpy (dHrest), glass transition temperature (Tg), and storage modulus (E) as a function of the transfer-mold process parameters and post-mold-cure (PMC) conditions of the material was established. The reliability of Tg estimation was tested using two methods: warpage analysis and DMA. The noticeable deterioration in the quality of the analytical signal for highly filled materials at high cure rates is discussed. Controlling the temperature by increasing the injection speed leads to the formation of a polymer network with a lower Tg and an increased storage modulus, indicating a lower density and a more heterogeneous structure due to the high heating rate and shear heating effect.

3.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674975

RESUMEN

Monitoring of molding processes is one of the most challenging future tasks in polymer processing. In this work, the in situ monitoring of the curing behavior of highly filled EMCs (silica filler content ranging from 73 to 83 wt%) and the effect of filler load on curing kinetics are investigated. Kinetic modelling using the Friedman approach was applied using real-time process data obtained from in situ DEA measurements, and these online kinetic models were compared with curing analysis data obtained from offline DSC measurements. For an autocatalytic fast-reacting material to be processed above the glass transition temperature Tg and for an autocatalytic slow-reacting material to be processed below Tg, time-temperature-transformation (TTT) diagrams were generated to investigate the reaction behavior regarding Tg progression. Incorporating a material containing a lower silica filler content of 10 wt% enabled analysis of the effects of filler content on sensor sensitivity and curing kinetics. Lower silica particle content (and a larger fraction of organic resin, respectively) favored reaction kinetics, resulting in a faster reaction towards Tg1. Kinetic analysis using DEA and DSC facilitated the development of highly accurate prediction models using the Friedman model-free approach. Lower silica particle content resulted in enhanced sensitivity of the analytical method, leading, in turn, to more precise prediction models for the degree of cure.

4.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675021

RESUMEN

An epoxy compound's polymer structure can be characterized by the glass transition temperature (Tg) which is often seen as the primary morphological characteristic. Determining the Tg after manufacturing thermoset-molded parts is an important objective in material characterization. To characterize quantitatively the dependence of Tg on the degree of cure, the DiBenedetto equation is usually used. Monitoring polymer network formation during molding processes is therefore one of the most challenging tasks in polymer processing and can be achieved using dielectric analysis (DEA). In this study, the morphological properties of an epoxy resin-based molding compounds (EMC) were optimized for the molding process using response surface analysis. Processing parameters such as curing temperature, curing time, and injection rate were investigated according to a DoE strategy and analyzed as the main factors affecting Tg as well as the degree of cure. A new method to measure the Tg at a certain degree of cure was developed based on warpage analysis. The degree of cure was determined inline via dielectric analysis (DEA) and offline using differential scanning calorimetry (DSC). The results were used as the response in the DoE models. The use of the DiBenedetto equation to refine the response characteristics for a wide range of process parameters has significantly improved the quality of response surface models based on the DoE approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA