Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005550

RESUMEN

Although smartwatches are not considered medical devices, experimental validation of their accuracy in detecting hypoxemia is necessary due to their potential use in monitoring conditions manifested by a prolonged decrease in peripheral blood oxygen saturation (SpO2), such as chronic obstructive pulmonary disease, sleep apnea syndrome, and COVID-19, or at high altitudes, e.g., during sport climbing, where the use of finger-sensor-based pulse oximeters may be limited. The aim of this study was to experimentally compare the accuracy of SpO2 measurement of popular smartwatches with a clinically used pulse oximeter according to the requirements of ISO 80601-2-61. Each of the 18 young and healthy participants underwent the experimental assessment three times in randomized order-wearing Apple Watch 8, Samsung Galaxy Watch 5, or Withings ScanWatch-resulting in 54 individual experimental assessments and complete datasets. The accuracy of the SpO2 measurements was compared to that of the Radical-7 (Masimo Corporation, Irvine, CA, USA) during short-term hypoxemia induced by consecutive inhalation of three prepared gas mixtures with reduced oxygen concentrations (14%, 12%, and 10%). All three smartwatch models met the maximum acceptable root-mean-square deviation (≤4%) from the reference measurement at both normal oxygen levels and induced desaturation with SpO2 less than 90%. Apple Watch 8 reached the highest reliability due to its lowest mean bias and root-mean-square deviation, highest Pearson correlation coefficient, and accuracy in detecting hypoxemia. Our findings support the use of smartwatches to reliably detect hypoxemia in situations where the use of standard finger pulse oximeters may be limited.


Asunto(s)
Oximetría , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Reproducibilidad de los Resultados , Oximetría/métodos , Oxígeno , Hipoxia/diagnóstico
2.
Sci Rep ; 13(1): 7153, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131058

RESUMEN

Scarcity of medical resources inspired many teams worldwide to design ventilators utilizing different approaches during the recent COVID-19 pandemic. Although it can be relatively easy to design a simple ventilator in a laboratory, a large scale production of reliable emergency ventilators which meet international standards for critical care ventilators is challenging and time consuming. The aim of this study is to propose a novel and easily manufacturable principle of gas mixing and inspiratory flow generation for mechanical lung ventilators. Two fast ON/OFF valves, one for air and one for oxygen, are used to control the inspiratory flow generation using pulse width modulation. Short gas flow pulses are smoothed by low-pass acoustic filters and do not propagate further into the patient circuit. At the same time, the appropriate pulse width modulation of both ON/OFF valves controls the oxygen fraction in the generated gas mixture. Tests focused on the accuracy of the delivered oxygen fractions and tidal volumes have proved compliance with the international standards for critical care ventilators. The concept of a simple construction using two fast ON/OFF valves may be used for designing mechanical lung ventilators and thus suitable for their rapid production during pandemics.


Asunto(s)
COVID-19 , Incidentes con Víctimas en Masa , Humanos , Pandemias , COVID-19/terapia , Ventiladores Mecánicos , Cuidados Críticos , Oxígeno
3.
Digit Health ; 8: 20552076221132127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249475

RESUMEN

Objective: We investigated how a commercially available smartwatch that measures peripheral blood oxygen saturation (SpO2) can detect hypoxemia compared to a medical-grade pulse oximeter. Methods: We recruited 24 healthy participants. Each participant wore a smartwatch (Apple Watch Series 6) on the left wrist and a pulse oximeter sensor (Masimo Radical-7) on the left middle finger. The participants breathed via a breathing circuit with a three-way non-rebreathing valve in three phases. First, in the 2-minute initial stabilization phase, the participants inhaled the ambient air. Then in the 5-minute desaturation phase, the participants breathed the oxygen-reduced gas mixture (12% O2), which temporarily reduced their blood oxygen saturation. In the final stabilization phase, the participants inhaled the ambient air again until SpO2 returned to normal values. Measurements of SpO2 were taken from the smartwatch and the pulse oximeter simultaneously in 30-s intervals. Results: There were 642 individual pairs of SpO2 measurements. The bias in SpO2 between the smartwatch and the oximeter was 0.0% for all the data points. The bias for SpO2 less than 90% was 1.2%. The differences in individual measurements between the smartwatch and oximeter within 6% SpO2 can be expected for SpO2 readings 90%-100% and up to 8% for SpO2 readings less than 90%. Conclusions: Apple Watch Series 6 can reliably detect states of reduced blood oxygen saturation with SpO2 below 90% when compared to a medical-grade pulse oximeter. The technology used in this smartwatch is sufficiently advanced for the indicative measurement of SpO2 outside the clinic. Trial Registration: ClinicalTrials.gov NCT04780724.

4.
Sci Rep ; 12(1): 2070, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136116

RESUMEN

Outdoor breathing trials with simulated avalanche snow are fundamental for the research of the gas exchange under avalanche snow, which supports the development of the international resuscitation guidelines. However, these studies have to face numerous problems, including unstable weather and variable snow properties. This pilot study examines a mineral material perlite as a potential snow model for studies of ventilation and gas exchange parameters. Thirteen male subjects underwent three breathing phases-into snow, wet perlite and dry perlite. The resulting trends of gas exchange parameters in all tested materials were similar and when there was a significant difference observed, the trends in the parameters for high density snow used in the study lay in between the trends in dry and wet perlite. These findings, together with its stability and accessibility year-round, make perlite a potential avalanche snow model material. Perlite seems suitable especially for simulation and preparation of breathing trials assessing gas exchange under avalanche snow, and potentially for testing of new avalanche safety equipment before their validation in real snow.The study was registered in ClinicalTrials.gov on January 22, 2018; the registration number is NCT03413878.


Asunto(s)
Óxido de Aluminio , Avalanchas , Intercambio Gaseoso Pulmonar/fisiología , Respiración , Dióxido de Silicio , Nieve , Adulto , Reanimación Cardiopulmonar/métodos , Estudios Cruzados , República Checa , Método Doble Ciego , Humanos , Masculino , Modelos Teóricos , Proyectos Piloto , Estudios Prospectivos , Entrenamiento Simulado , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...