Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Eur J Immunol ; : e2451035, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627984

RESUMEN

OBJECTIVES: In the post-SARS-CoV-2 pandemic era, "breakthrough infections" are still documented, due to variants of concerns (VoCs) emergence and waning humoral immunity. Despite widespread utilization, the definition of the anti-Spike (S) immunoglobulin-G (IgG) threshold to define protection has unveiled several limitations. Here, we explore the advantages of incorporating T-cell response assessment to enhance the definition of immune memory profile. METHODS: SARS-CoV-2 interferon-gamma release assay test (IGRA) was performed on samples collected longitudinally from immunocompetent healthcare workers throughout their immunization by infection and/or vaccination, anti-receptor-binding domain IgG levels were assessed in parallel. The risk of symptomatic infection according to cellular/humoral immune capacities during Omicron BA.1 wave was then estimated. RESULTS: Close to 40% of our samples were exclusively IGRA-positive, largely due to time elapsed since their last immunization. This suggests that individuals have sustained long-lasting cellular immunity, while they would have been classified as lacking protective immunity based solely on IgG threshold. Moreover, the Cox regression model highlighted that Omicron BA.1 circulation raises the risk of symptomatic infection while increased anti-receptor-binding domain IgG and IGRA levels tended to reduce it. CONCLUSION: The discrepancy between humoral and cellular responses highlights the significance of assessing the overall adaptive immune response. This integrated approach allows the identification of vulnerable subjects and can be of interest to guide antiviral prophylaxis at an individual level.

2.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189779

RESUMEN

The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.


Asunto(s)
Linfocitos T CD4-Positivos , Sistema Nervioso Central , Proteínas de Dominio T Box , Humanos , Muerte Celular , Inflamación , Mitocondrias , Proteínas de Dominio T Box/genética
4.
Cell Rep ; 42(10): 113230, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815917

RESUMEN

T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.


Asunto(s)
Interleucina-17 , Receptores de Antígenos de Linfocitos T gamma-delta , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ratones Endogámicos C57BL , Linfocitos T , Timo , Subgrupos de Linfocitos T , Proteínas Proto-Oncogénicas c-maf
5.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628917

RESUMEN

CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.


Asunto(s)
Transducción de Señal , Serina-Treonina Quinasas TOR , Células Asesinas Naturales , Linfocitos T CD8-positivos , Ciclo Celular , Citocinas
6.
RMD Open ; 9(2)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321666

RESUMEN

An European Alliance of Associations for Rheumatology task force recently recommended specific points to consider for exploring type I interferon pathway in patients, highlighting the lack of analytical assays validated for clinical routine. We report here the French experience on a type I interferon pathway assay that has been set up and used routinely since 2018 in Lyon, France.


Asunto(s)
Interferón Tipo I , Reumatología , Humanos , Francia
7.
Euro Surveill ; 28(15)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052679

RESUMEN

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Asunto(s)
COVID-19 , Vacunas , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Francia/epidemiología , Estudios Prospectivos , SARS-CoV-2 , Vacunación
8.
J Immunol ; 210(9): 1209-1221, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961448

RESUMEN

Autosomal recessive PRKCD deficiency has previously been associated with the development of systemic lupus erythematosus in human patients, but the mechanisms underlying autoimmunity remain poorly understood. We introduced the Prkcd G510S mutation that we previously associated to a Mendelian cause of systemic lupus erythematosus in the mouse genome, using CRISPR-Cas9 gene editing. PrkcdG510S/G510S mice recapitulated the human phenotype and had reduced lifespan. We demonstrate that this phenotype is linked to a B cell-autonomous role of Prkcd. A detailed analysis of B cell activation in PrkcdG510S/G510S mice shows an upregulation of the PI3K/mTOR pathway after the engagement of the BCR in these cells, leading to lymphoproliferation. Treatment of mice with rapamycin, an mTORC1 inhibitor, significantly improves autoimmune symptoms, demonstrating in vivo the deleterious effect of mTOR pathway activation in PrkcdG510S/G510S mice. Additional defects in PrkcdG510S/G510S mice include a decrease in peripheral mature NK cells that might contribute to the known susceptibility to viral infections of patients with PRKCD mutations.


Asunto(s)
Autoinmunidad , Lupus Eritematoso Sistémico , Humanos , Animales , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Linfocitos B , Proliferación Celular
9.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921035

RESUMEN

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
10.
Nat Commun ; 14(1): 694, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755036

RESUMEN

Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2/metabolismo , Antivirales/metabolismo , Células Dendríticas/metabolismo , Interferón lambda
11.
J Clin Immunol ; 42(6): 1310-1320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670985

RESUMEN

BACKGROUND: Deoxyribonuclease 1 like 3 (DNASE1L3) is a secreted enzyme that has been shown to digest the extracellular chromatin derived from apoptotic bodies, and DNASE1L3 pathogenic variants have been associated with a lupus phenotype. It is unclear whether interferon signaling is sustained in DNASE1L3 deficiency in humans. OBJECTIVES: To explore interferon signaling in DNASE1L3 deficient patients. To depict the characteristic features of DNASE1L3 deficiencies in human. METHODS: We identified, characterized, and analyzed five new patients carrying biallelic DNASE1L3 variations. Whole or targeted exome and/or Sanger sequencing was performed to detect pathogenic variations in five juvenile systemic erythematosus lupus (jSLE) patients. We measured interferon-stimulated gene (ISG) expression in all patients. We performed a systematic review of all published cases available from its first description in 2011 to March 24th 2022. RESULTS: We identified five new patients carrying biallelic DNASE1L3 pathogenic variations, including three previously unreported mutations. Contrary to canonical type I interferonopathies, we noticed a transient increase of ISGs in blood, which returned to normal with disease remission. Disease in one patient was characterized by lupus nephritis and skin lesions, while four others exhibited hypocomplementemic urticarial vasculitis syndrome. The fourth patient presented also with early-onset inflammatory bowel disease. Reviewing previous reports, we identified 35 additional patients with DNASE1L3 deficiency which was associated with a significant risk of lupus nephritis and a poor outcome together with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). Lung lesions were reported in 6/35 patients. CONCLUSIONS: DNASE1L3 deficiencies are associated with a broad phenotype including frequently lupus nephritis and hypocomplementemic urticarial vasculitis with positive ANCA and rarely, alveolar hemorrhages and inflammatory bowel disease. This report shows that interferon production is transient contrary to anomalies of intracellular DNA sensing and signaling observed in Aicardi-Goutières syndrome or STING-associated vasculitis in infancy (SAVI).


Asunto(s)
Endodesoxirribonucleasas , Enfermedades Inflamatorias del Intestino , Interferón Tipo I , Lupus Eritematoso Sistémico , Nefritis Lúpica , Vasculitis , Anticuerpos Anticitoplasma de Neutrófilos/genética , Cromatina , ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Humanos , Interferón Tipo I/genética , Interferones , Lupus Eritematoso Sistémico/genética , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Fenotipo , Vasculitis/diagnóstico
12.
BMJ Open ; 12(4): e056819, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393316

RESUMEN

INTRODUCTION: Patients with metastatic non-small cell lung cancer (mNSCLC) suffer from numerous symptoms linked to disease and treatment which may further impair the patient's overall condition. In addition to its benefits on quality of life and fatigue, physical exercise may improve treatment response, notably due to its known effects on the immune system. The ERICA study is designed to assess the feasibility of a supervised acute physical exercise therapy realised immediately prior immune-chemotherapy infusion in patients with mNSCLC. Secondary objectives will examine the effects of acute exercise combined with an unsupervised home-walking programme on clinical, physical, psychosocial and biological parameters. METHODS AND ANALYSIS: ERICA is a prospective, monocentric, randomised controlled, open-label feasibility study conducted at the Centre Léon Bérard Comprehensive Cancer Center (France). Thirty patients newly diagnosed with mNSCLC will be randomised (2:1 ratio) to the 'exercise' or the 'control' group. At baseline and during the last treatment cycle, participants in both groups will receive Physical Activity recommendations, and two nutritional assessments. In the exercise group, participants will receive a 3-month programme consisting of a supervised acute physical exercise session prior to immune-chemotherapy infusion, and an unsupervised home-based walking programme with an activity tracker. The acute exercise consists of 35 min interval training at submaximal intensity scheduled to terminate 15 min prior to infusion. Clinical, physical, biological and psychosocial parameters will be assessed at baseline, 3 and 6 months after inclusion. Biological measures will include immune, inflammatory, metabolic, oxidative stress biomarkers and molecular profiling. ETHICS AND DISSEMINATION: The study protocol was approved by the French ethics committee (Comité de protection des personnes Ile de France II, N°ID-RCB 20.09.04.65226, 8 December 2020). The study is registered on ClinicalTrials.gov (NCT number:NCT04676009) and is at the pre-results stage. All participants will sign an informed consent form. The findings will be disseminated in peer-reviewed journals and academic conferences.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/terapia , Ejercicio Físico , Terapia por Ejercicio , Estudios de Factibilidad , Humanos , Inmunoterapia , Neoplasias Pulmonares/terapia , Estudios Prospectivos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
J Immunol ; 208(7): 1802-1812, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288470

RESUMEN

NK cell receptors allow NK cells to recognize targets such as tumor cells. Many of them are expressed on a subset of NK cells, independently of each other, which creates a vast diversity of receptor combinations. Whether these combinations influence NK cell antitumor responses is not well understood. We addressed this question in the C57BL/6 mouse model and analyzed the individual effector response of 444 mouse NK cell subsets, defined by combinations of 12 receptors, against tumor cell lines originating from different tissues and mouse strains. We found a wide range of reactivity among NK subsets, but the same hierarchy of responses was observed for the different tumor types, showing that the repertoire of NK cell receptors does not encode for different tumor specificities but for different intrinsic reactivities. The coexpression of CD27, NKG2A, and DNAM-1 identified subsets with relative cytotoxic specialization, whereas reciprocally, CD11b and KLRG1 defined the best IFN-γ producers. The expression of educating receptors Ly49C, Ly49I, and NKG2A was also strongly correlated with IFN-γ production, but this effect was suppressed by unengaged receptors Ly49A, Ly49F, and Ly49G2. Finally, IL-15 coordinated NK cell effector functions, but education and unbound inhibitory receptors retained some influence on their response. Collectively, these data refine our understanding of the mechanisms governing NK cell reactivity, which could help design new NK cell therapy protocols.


Asunto(s)
Interferón gamma , Células Asesinas Naturales , Animales , Línea Celular Tumoral , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Células Asesinas Naturales/metabolismo
15.
Bioessays ; 44(3): e2100281, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35023197

RESUMEN

T-bet and Eomes are two related transcription factors (TFs) that regulate the differentiation of cytotoxic lymphocytes such as Natural Killer (NK) cells and CD8 T cells. Recent genome-wide analyses suggest they have complementary roles in instructing the transcriptional program of NK cells, although their DNA binding sites appear to be very similar. In this essay, we discuss the mechanisms that could specify their action, addressing their expression profile, the cofactors they interact with, as well as their roles in the epigenetic regulation of chromatin accessibility. Based on the recent literature on these TFs, we propose different models to describe how they regulate gene expression in NK cells at steady state, or in the context of activation or exhaustion. We also discuss recent findings in the field of CD8 T cell differentiation and residency, where Eomes and T-bet appear to be major regulators, and the parallels that can be drawn between mechanisms of NK and CD8 T cell differentiation and trafficking.


Asunto(s)
Epigénesis Genética , Proteínas de Dominio T Box , Diferenciación Celular , Estudio de Asociación del Genoma Completo , Células Asesinas Naturales/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
16.
Nature ; 600(7890): 701-706, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673755

RESUMEN

Following severe adverse reactions to the AstraZeneca ChAdOx1-S-nCoV-19 vaccine1,2, European health authorities recommended that patients under the age of 55 years who received one dose of ChAdOx1-S-nCoV-19 receive a second dose of the Pfizer BNT162b2 vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here we show that the heterologous ChAdOx1-S-nCoV-19 and BNT162b2 combination confers better protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the homologous BNT162b2 and BNT162b2 combination in a real-world observational study of healthcare workers (n = 13,121). To understand the underlying mechanism, we conducted a longitudinal survey of the anti-spike immunity conferred by each vaccine combination. Both combinations induced strong anti-spike antibody responses, but sera from heterologous vaccinated individuals displayed a stronger neutralizing activity regardless of the SARS-CoV-2 variant. This enhanced neutralizing potential correlated with increased frequencies of switched and activated memory B cells that recognize the SARS-CoV-2 receptor binding domain. The ChAdOx1-S-nCoV-19 vaccine induced a weaker IgG response but a stronger T cell response than the BNT162b2 vaccine after the priming dose, which could explain the complementarity of both vaccines when used in combination. The heterologous vaccination regimen could therefore be particularly suitable for immunocompromised individuals.


Asunto(s)
Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , ChAdOx1 nCoV-19/administración & dosificación , ChAdOx1 nCoV-19/inmunología , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Femenino , Francia/epidemiología , Hospitales Universitarios , Humanos , Memoria Inmunológica/inmunología , Incidencia , Masculino , Células B de Memoria/inmunología , Células T de Memoria/inmunología , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología
17.
Nat Commun ; 12(1): 5446, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521844

RESUMEN

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Asunto(s)
Ciclo Celular/genética , Linaje de la Célula/genética , Células Asesinas Naturales/inmunología , Proteínas de Dominio T Box/genética , Animales , Secuencia de Bases , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/inmunología , Diferenciación Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/inmunología , Epigénesis Genética/inmunología , Interleucina-12/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Bazo/citología , Bazo/inmunología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/inmunología , Transcripción Genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
19.
PLoS One ; 16(8): e0255972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34370787

RESUMEN

Torque Teno Virus (TTV) is a small, non-enveloped, single-stranded and circular DNA virus that infects the majority of the population worldwide. Increased levels of plasma TTV viral load have been observed in various situations of immune deficiency or dysregulation, and several studies have suggested that TTV levels may be inversely correlated with immune competence. The measurement of TTV viremia by qPCR has been proposed as a potential biomarker for the follow-up of functional immune competence in immunosuppressed individuals, particularly hematopoietic stem cell transplant recipients. We hypothesized that TTV viral load could be used as a prognostic marker of immune checkpoint inhibitor (ICI) efficacy, and therefore investigated the TTV viral load in melanoma patients treated with nivolumab or pembrolizumab before and after 6 months of treatment. In the present study, TTV viral load was not different in melanoma patients before anti-PD-1 introduction compared to healthy volunteers, was not modified by ICI treatment and did not allowed to distinguish patients with treatment-sensitive tumor from patients with treatment-resistant tumor.


Asunto(s)
Biomarcadores/análisis , Infecciones por Virus ADN/virología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/patología , Torque teno virus/fisiología , Carga Viral , Viremia/virología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Huésped Inmunocomprometido , Masculino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/virología , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
20.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34357402

RESUMEN

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Asunto(s)
Autoanticuerpos/inmunología , COVID-19/inmunología , Interferón Tipo I/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Animales , Antivirales/inmunología , Antivirales/farmacología , Autoanticuerpos/sangre , COVID-19/sangre , COVID-19/virología , Chlorocebus aethiops , Femenino , Humanos , Interferón Tipo I/farmacología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Cavidad Nasal/inmunología , Cavidad Nasal/virología , Estudios Prospectivos , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Carga Viral/inmunología , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...