Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37631526

RESUMEN

Two reversible furan-maleimide resins, in which there are rigid -Ph-CH2-Ph- structures and flexible -(CH2)6- structures in bismaleimides, were synthesized from furfuryl glycidyl ethers (FGE), 4,4'-diaminodiphenyl ether (ODA), N,N'-4,4'-diphenylmethane-bismaleimide (DBMI), and N,N'-hexamethylene-bismaleimide (HBMI). The structures of the resins were confirmed using Fourier transform infrared analysis, and the thermoreversibility was evidenced using differential scanning calorimetry (DSC) analysis, as well as the sol-gel transformation process. Mechanical properties and recyclability of the resins were preliminarily evaluated using the flexural test. The results show the Diels-Alder (DA) reaction occurs at about 90 °C and the reversible DA reaction occurs at 130-140 °C for the furan-maleimide resin. Thermally reversible furan-maleimide resins have high mechanical properties. The flexural strength of cured FGE-ODA-HBMI resin arrives at 141 MPa. The resins have a repair efficiency of over 75%. After being hot-pressed three times, two resins display flexural strength higher than 80 MPa.

2.
PeerJ ; 9: e11962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589294

RESUMEN

Climate change (rainfall events and global warming) affects the survival of alfalfa (Medicago sativa L.) in winter. Appropriate water management can quickly reduce the mortality of alfalfa during winter. To determine how changes in water affect the cold resistance of alfalfa, we explored the root system traits under different rainfall events and the effects on cold resistance in three alfalfa cultivars. These were exposed to three simulated rainfall events (SRE) × two phases in a randomized complete block design with six replications. The three cultivars were WL168, WL353 and WL440, and the three SRE were irrigation once every second day (D2), every four days (D4) and every eight days (D8). There were two phases: before cold acclimation and after cold acclimation. Our results demonstrated that a period of exposure to low temperature was required for alfalfa to achieve maximum cold resistance. The root system tended toward herringbone branching under D8, compared with D2 and D4, and demonstrated greater root biomass, crown diameter, root volume, average link length and topological index. Nevertheless, D8 had less lateral root length, root surface area, specific root length, root forks and fractal dimensions. Greater root biomass and topological index were beneficial to cold resistance in alfalfa, while more lateral roots and root forks inhibited its ability to survive winter. Alfalfa roots had higher proline, soluble sugar and starch content in D8 than in D2 and D4. In contrast, there was lower malondialdehyde in D8, indicating that alfalfa had better cold resistance following a longer irrigation interval before winter. After examining root biomass, root system traits and physiological indexes we concluded that WL168 exhibited stronger cold resistance. Our results contribute to greater understanding of root and cold stress, consequently providing references for selection of cultivars and field water management to improve cold resistance of alfalfa in the context of changes in rainfall patterns.

3.
J Am Chem Soc ; 143(31): 11919-11926, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323481

RESUMEN

Here we report a nonenzymatic glycosylation reaction that builds axial S-glycosidic bonds under biorelevant conditions. This strategy is enabled by the design and use of allyl glycosyl sulfones as precursors to glycosyl radicals and exploits the exceptional functional group tolerance of radical processes. Our method introduces a variety of unprotected glycosyl units to the cysteine residues of peptides in a highly selective fashion. Through developing the second-generation protocol, we applied our method in the direct glycosylation of complex polypeptides and proteins. Computational studies were performed to elucidate the reaction mechanism.


Asunto(s)
Péptidos/síntesis química , Proteínas/síntesis química , Glicosilación , Estructura Molecular , Péptidos/química , Proteínas/química , Estereoisomerismo
4.
Org Lett ; 23(10): 3818-3822, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33974795

RESUMEN

Here we report a general and mild approach to prepare α-branched aliphatic amines from imines. This method capitalizes on a cobalt-catalyzed umpolung alkylation of imines, employs easily available reaction partners, and demonstrates a broad substrate scope. Mechanistic studies suggest this transformation occurs by a radical pathway.

5.
PLoS One ; 15(10): e0240559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33057441

RESUMEN

The long-term impact of human exploitation and environmental changes has led to a decline in grassland productivity and soil fertility, which eventually results in grassland degradation. The application of organic fertilizer is an effective improvement measure; however, it is still not fully understood how the addition of organic fertilizer influences grassland soil fertility and plant composition. A set of experiments were conducted in Inner Mongolia in China to reveal the tradeoff between steppe plants and soil microorganisms and the eco-physiological mechanisms involved, and how the addition of vermicompost and mushroom residues affect microbial diversity, enzyme activities, and the chemical properties of soil in degraded Leymus chinensis grassland. Organic fertilizer improved the soil nutrient status and shaped distinct bacterial communities. Compared with the control the available phosphorus (AP) and available potassium (AK) contents were highest under treatments a3 and b3, and the aboveground biomass was highest under the b3 treatment. Soil sucrase activities increased by 7.88% under the b3 treatment. Moreover, the richness index significantly increased by 7.07% and 7.23% under the a1 and b2 treatments, respectively. The most abundant Actinobacteria and Proteobacteria were detected in the organic fertilizer treatment. A linear discriminant analysis effect size (LEfSe) indicated that the bacterial community was significantly increased under the b3 treatment. A canonical correspondence analysis (RDA) and spearman correlation heatmap confirmed that total P (TP) and urease were the key driving factors for shaping bacterial communities in the soil. Our results indicated that the application of large amounts of vermicompost and mushroom residues increased the availability of nutrients and also enhanced the biodiversity of soil bacterial communities in L. chinensis grasslands, which will contribute to the sustainable development of agro-ecosystems.


Asunto(s)
Bacterias/aislamiento & purificación , Fertilizantes , Microbiota , Nutrientes/análisis , Microbiología del Suelo , Bacterias/metabolismo , Biomasa , China , Pradera , Nutrientes/metabolismo , Suelo/química
6.
Des Monomers Polym ; 23(1): 50-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489341

RESUMEN

Three azido-terminated poly(ethylene glycol) macromonomers (ATPEGs) were synthesized from poly(ethylene glycol)s (PEGs) and characterized. The extended polytriazole (EPTA) resins were prepared from the macromonomers, azide and alkyne monomers. Toughening effect of PEGs on polytriazole resins was analyzed by means of mechanical, thermal and electronic microscope characterization. The results show that molecular weight and content of ATPEGs have great influence on the thermal and mechanical properties of cured EPTA resins. The impact strength of cured EPTA resins increases with the increase of the amount and molecular weight of ATPEGs. The flexural strength and heat resistance of cured EPTA resins decrease with the increase of addition amount and molecular weight of ATPEGs. High impact EPTA resins were obtained.

7.
ACS Appl Mater Interfaces ; 11(45): 42486-42495, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638768

RESUMEN

Bioinspired by the aligned structure and building blocks of bone, this work mineralized the aligned bacterial cellulose (BC) through in situ mineralization using CaCl2 and K2HPO4 solutions. The cellulose nanofibers were aligned by a scalable stretching process. The aligned and mineralized bacterial cellulose (AMBC) homogeneously incorporated hydroxyapatite (HAP) with a high mineral content and exhibited excellent mechanical strength. The ordered 3D structure allowed the AMBC composite to achieve a high elastic modulus and hardness and the development of a nanostructure inspired by natural bone. The AMBC composite exhibited an elastic modulus of 10.91 ± 3.26 GPa and hardness of 0.37 ± 0.18 GPa. Compared with the nonaligned mineralized bacterial cellulose (NMBC) composite with mineralized crystals of HAP randomly distributed into the BC scaffolds, the AMBC composite possessed a 210% higher elastic modulus and 95% higher hardness. The obtained AMBC composite had excellent mechanical properties by mimicking the natural structure of bone, which indicated that the organic BC aerogel with aligned nanofibers was a promising template for biomimetic mineralization.

8.
Plant Mol Biol ; 96(4-5): 473-492, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29532290

RESUMEN

KEY MESSAGE: The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.


Asunto(s)
Medicago sativa/genética , Medicago sativa/fisiología , MicroARNs/genética , Fosfatos/deficiencia , Secuencia de Bases , Secuencia Conservada/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Modelos Biológicos , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Reproducibilidad de los Resultados
9.
Macromol Rapid Commun ; 39(9): e1800039, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29517176

RESUMEN

Shape-memory polymers (SMPs) possess the capability to change shapes upon stimulation; however, the programming process that determines the temporary shape cannot proceed without external manipulation, which may greatly affect the shape complexity, accuracy, and reproducibility. Here, an automatically programmable SMP (AP-SMP) based on asymmetric swelling of bilayer SMP structures is demonstrated without external manipulation. In the automatic programming process, the AP-SMP can be deformed by the swelling of its hydrophilic hinge film in warm water to a temporary shape, which could be fixed by the glass transition of the two SMP films through cooling and drying in air. Owing to the unique ability, many complex shapes can be easily customized through diverse design strategies. Moreover, the AP-SMPs can reversibly transform between the permanent and temporary shapes, and both shapes are free-standing in normal conditions. The automatic programming of AP-SMPs may greatly expand the potential application range of SMPs.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Temperatura
10.
RSC Adv ; 8(16): 8552-8557, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35539842

RESUMEN

Novolac-based poly(1,2,3-triazolium)s with 1,2,3-triazolium side groups spaced by oligo(ethylene glycol), a new kind of poly(ionic liquid) membrane, was prepared via the well-known Click chemistry (1,3-dipolar cycloaddition reaction). The thermal properties, ionic conductivity and gas permeation performance of these self-standing membranes were investigated. The obtained membranes exhibit glass transition temperatures ranging from -1 °C to -7.5 °C, and a temperature at 10% weight loss above 330 °C. These membranes have good ionic conductivity (σ DC up to 5.1 × 10-7 S cm-1 at 30 °C under anhydrous conditions) as compared with the reported 1,2,3-triazolium-based crosslinked polymers. And they could be potentially used for CO2 separation as they exhibit enhanced CO2 permeability up to 434.5 barrer at 4 atm pressure.

11.
Angew Chem Int Ed Engl ; 56(25): 7213-7217, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28523904

RESUMEN

A copper/borinic acid dual catalytic reaction enabled the enantioselective propargylation of aliphatic polyols. Readily available reagents and catalysts were used in this transformation, which displayed good to excellent chemo- and stereoselectivity for a broad array of substrates. The method was also applicable to the desymmetrization of meso 1,2-diols to furnish products with three stereogenic centers and a terminal alkyne group in one operation.

12.
Genes (Basel) ; 8(4)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406444

RESUMEN

Alfalfa, an important forage legume, is an ideal crop for sustainable agriculture and a potential crop for bioenergy resources. Drought, one of the most common environmental stresses, substantially affects plant growth, development, and productivity. MicroRNAs (miRNAs) are newly discovered gene expression regulators that have been linked to several plant stress responses. To elucidate the role of miRNAs in drought stress regulation of alfalfa, a high-throughput sequencing approach was used to analyze 12 small RNA libraries comprising of four samples, each with three biological replicates. From the 12 libraries, we identified 348 known miRNAs belonging to 80 miRNA families, and 281 novel miRNAs, using Mireap software. Eighteen known miRNAs in roots and 12 known miRNAs in leaves were screened as drought-responsive miRNAs. With the exception of miR319d and miR157a which were upregulated under drought stress, the expression pattern of drought-responsive miRNAs was different between roots and leaves in alfalfa. This is the first study that has identified miR3512, miR3630, miR5213, miR5294, miR5368 and miR6173 as drought-responsive miRNAs. Target transcripts of drought-responsive miRNAs were computationally predicted. All 447 target genes for the known miRNAs were predicted using an online tool. This study provides a significant insight on understanding drought-responsive mechanisms of alfalfa.

13.
Asian Pac J Cancer Prev ; 14(4): 2307-10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23725132

RESUMEN

Curcumin previously was proven to inhibit angiogenesis and display potent antitumor activity in vivo and in vitro. In the present study, we investigated whether a combination curcumin with hyperthermia would have a synergistic antitumor effect in the LL/2 model. The results indicated that combination therapy significantly inhibited cell proliferation of MS-1 and LL/2 in vitro. LL/2 experiment model also demonstrated that the combination therapy inhibited tumor growth and prolonged the life span in vivo. Furthermore, combination therapy reduced angiogenesis and increased tumor apoptosis. Our findings suggest that the combination therapy exerted synergistic antitumor effects, providing a new perspective fpr clinical tumor therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Pulmonar de Lewis/prevención & control , Curcumina/uso terapéutico , Hipertermia Inducida , Neovascularización Patológica/prevención & control , Animales , Western Blotting , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/patología , Proliferación Celular , Terapia Combinada , Femenino , Técnica del Anticuerpo Fluorescente , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(12): 2984-8, 2008 Dec.
Artículo en Chino | MEDLINE | ID: mdl-19248528

RESUMEN

Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.


Asunto(s)
Elymus/efectos de los fármacos , Elymus/metabolismo , Minerales/metabolismo , Cloruro de Sodio/toxicidad , Espectrofotometría Atómica , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...