Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 222, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858133

RESUMEN

BACKGROUND: Energy homeostasis is essential for the adaptation of animals to their environment and some wild animals keep low metabolism adaptive to their low-nutrient dietary supply. Giant panda is such a typical low-metabolic mammal exhibiting species specialization of extremely low daily energy expenditure. It has low levels of basal metabolic rate, thyroid hormone, and physical activities, whereas the cellular bases of its low metabolic adaptation remain rarely explored. RESULTS: In this study, we generate a single-nucleus transcriptome atlas of 21 organs/tissues from a female giant panda. We focused on the central metabolic organ (liver) and dissected cellular metabolic status by cross-species comparison. Adaptive expression mode (i.e., AMPK related) was prominently displayed in the hepatocyte of giant panda. In the highest energy-consuming organ, the heart, we found a possibly optimized utilization of fatty acid. Detailed cell subtype annotation of endothelial cells showed the uterine-specific deficiency of blood vascular subclasses, indicating a potential adaptation for a low reproductive energy expenditure. CONCLUSIONS: Our findings shed light on the possible cellular basis and transcriptomic regulatory clues for the low metabolism in giant pandas and helped to understand physiological adaptation response to nutrient stress.


Asunto(s)
Ursidae , Animales , Femenino , Ursidae/genética , Ursidae/metabolismo , Transcriptoma , Células Endoteliales , Animales Salvajes , Ejercicio Físico
2.
iScience ; 26(1): 105850, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36636341

RESUMEN

Lifespan is a life-history trait that undergoes natural selection. Telomeres are hallmarks of aging, and shortening rate predicts species lifespan, making telomere maintenance mechanisms throughout different lifespans a worthy topic for study. Alligators are suitable for the exploration of anti-aging molecular mechanisms, because they exhibit low or even negligible mortality in adults and no significant telomere shortening. Telomerase reverse transcriptase (TERT) expression is absent in the adult Alligator sinensis, as in humans. Selection analyses on telomere maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10, and MAP3K4 experienced positive selection on A. sinensis. Repressed pleiotropic ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM downstream, Alternative Lengthening of Telomeres (ALT)-related genes were clustered in a higher expression pattern in A. sinensis, which covers 10-15% of human cancers showing no telomerase activities. In summary, we demonstrated how telomere shortening, telomerase activities, and ALT contributed to anti-aging strategies.

3.
Mol Ecol Resour ; 23(1): 294-311, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35980602

RESUMEN

Critically endangered species are usually restricted to small and isolated populations. High inbreeding without gene flow among populations further aggravates their threatened condition and reduces the likelihood of their long-term survival. Chinese alligator (Alligator sinensis) is one of the most endangered crocodiles in the world and has experienced a continuous decline over the past c. 1 million years. In order to identify the genetic status of the remaining populations and aid conservation efforts, we assembled the first high-quality chromosome-level genome of Chinese alligator and explored the genomic characteristics of three extant breeding populations. Our analyses revealed the existence of at least three genetically distinct populations, comprising two breeding populations in China (Changxing and Xuancheng) and one breeding population in an American wildlife refuge. The American population does not belong to the last two populations of its native range (Xuancheng and Changxing), thus representing genetic diversity extinct in the wild and provides future opportunities for genetic rescue. Moreover, the effective population size of these three populations has been continuously declining over the past 20 ka. Consistent with this decline, the species shows extremely low genetic diversity, a large proportion of long runs of homozygous fragments, and mutational load across the genome. Finally, to provide genomic insights for future breeding management and conservation, we assessed the feasibility of mixing extant populations based on the likelihood of introducing new deleterious alleles and signatures of local adaptation. Overall, this study provides a valuable genomic resource and important genomic insights into the ecology, evolution, and conservation of critically endangered alligators.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Especies en Peligro de Extinción , Genómica , Alelos , Variación Genética
4.
Genes (Basel) ; 13(4)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35456484

RESUMEN

Tactile-foraging birds have evolved an enlarged principal sensory nucleus (PrV) but smaller brain regions related to the visual system, which reflects the difference in sensory dependence. The "trade-off" may exist between different senses in tactile foragers, as well as between corresponding sensory-processing areas in the brain. We explored the mechanism underlying the adaptive evolution of sensory systems in three tactile foragers (kiwi, mallard, and crested ibis). The results showed that olfaction-related genes in kiwi and mallard and hearing-related genes in crested ibis were expanded, indicating they may also have sensitive olfaction or hearing, respectively. However, some genes required for visual development were positively selected or had convergent amino acid substitutions in all three tactile branches, and it seems to show the possibility of visual degradation. In addition, we may provide a new visual-degradation candidate gene PDLIM1 who suffered dense convergent amino acid substitutions within the ZM domain. At last, two genes responsible for regulating the proliferation and differentiation of neuronal progenitor cells may play roles in determining the relative sizes of sensory areas in brain. This exploration offers insight into the relationship between specialized tactile-forging behavior and the evolution of sensory abilities and brain structures.


Asunto(s)
Aves , Genómica , Animales , Aves/fisiología , Olfato
5.
PLoS One ; 16(4): e0250075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891612

RESUMEN

Gut microbiota is known to influence the host's health; an imbalance of the gut microbial community leads to various intestinal and non-intestinal diseases. Research on gut microbes of endangered birds is vital for their conservation. However, a thorough understanding of the gut microbiome composition present in crested ibises at different ages and its correlation with crested ibis reproductive capacity has remained elusive. Here, we used 16S rRNA gene sequencing to explore the fecal microbial structure of nestlings and adult birds, and the difference in gut microbiota between healthy and sterile crested ibises. We observed that (1) bacterial microbiota, alpha and beta diversity of one-day-old nestlings significantly distinguished from other nestlings; abundance of Proteobacteria decreased, while that of Fusobacteria increased with an increase in the age of the nestlings; (2) there was no significant difference in community composition among adult crested ibises aged one, two, three, and five years; (3) the abundance of Proteobacteria and alpha diversity indices were higher in sterile crested ibises than in healthy crested ibises; thus, Proteobacteria can act as a diagnostic biomarker of reproductive dysfunction in crested ibises. This study significantly contributes to the field of ecology and conservation, as it provides a platform for assessing the reproductive capacity of endangered crested ibises, based on the gut microbiota composition. Further studies may unravel additional factors influencing crested ibises' reproductive health, which will further help the management and control of the crested ibis population.


Asunto(s)
Aves/fisiología , Microbioma Gastrointestinal/fisiología , Reproducción/fisiología , Animales , Aves/microbiología , Proteobacteria
6.
Animals (Basel) ; 11(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499157

RESUMEN

Ornamental feather coloration is usually a reflection of male quality and plays an important role during courtship, whereas the essence of male quality at the genetic level is not well understood. Major histocompatibility complex (MHC)-based mate choice has been observed in various vertebrates. Here, we investigated the relationship between the coloration of cape feathers and the MHC genotypes in golden pheasants (Chrysolophus pictus). We found that feather coloration differed sharply among different individuals (brightness: 1827.20 ± 759.43, chroma: 1241.90 ± 468.21, hue: 0.46 ± 0.06). Heterozygous individuals at the most polymorphic MHC locus (IA2) had brighter feathers than homozygous individuals (Z = -2.853, p = 0.004) and were more saturated in color (Z = -2.853, p = 0.004). However, feather coloration was not related to other MHC loci or to overall genetic heterozygosity (p > 0.050). Our study suggested that coloration of cape feathers might signal IA2 genotypes in golden pheasants.

7.
Sci Bull (Beijing) ; 66(19): 2002-2013, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654170

RESUMEN

Extant giant pandas are divided into Sichuan and Qinling subspecies. The giant panda has many species-specific characteristics, including comparatively small organs for body size, small genitalia of male individuals, and low reproduction. Here, we report the most contiguous, high-quality chromosome-level genomes of two extant giant panda subspecies to date, with the first genome assembly of the Qinling subspecies. Compared with the previously assembled giant panda genomes based on short reads, our two assembled genomes increased contiguity over 200-fold at the contig level. Additional sequencing of 25 individuals dated the divergence of the Sichuan and Qinling subspecies into two distinct clusters from 10,000 to 12,000 years ago. Comparative genomic analyses identified the loss of regulatory elements in the dachshund family transcription factor 2 (DACH2) gene and specific changes in the synaptotagmin 6 (SYT6) gene, which may be responsible for the reduced fertility of the giant panda. Positive selection analysis between the two subspecies indicated that the reproduction-associated IQ motif containing D (IQCD) gene may at least partly explain the different reproduction rates of the two subspecies. Furthermore, several genes in the Hippo pathway exhibited signs of rapid evolution with giant panda-specific variants and divergent regulatory elements, which may contribute to the reduced inner organ sizes of the giant panda.


Asunto(s)
Ursidae , Humanos , Animales , Perros , Masculino , Ursidae/genética , Genoma/genética , Cromosomas
8.
BMC Genomics ; 21(1): 774, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167853

RESUMEN

BACKGROUND: Hibernation in an appropriate environment not only is important for the survival of hibernators in winter, but also is crucial for breeding in the following season for many hibernating species. However, the genetic and epigenetic mechanism underlying this process remain unclear. In the current study, we performed an integrative multi-omics analysis of gonads collected from Chinese alligators that overwintered in wild cave and artificial warmroom to explore transcriptomic and epigenomic alternations in these organs. RESULTS: The data revealed that in the breeding season, female alligators were more strongly affected in terms of gene expression than males by non-hibernation because of overwintering in a warm room, especially for genes related to oocyte maturation, and this effect commenced in winter with the downregulation of STAR, which is the rate limiting factor of steroid biosynthesis. Further, miRNAs were found to play essential roles in this negative effect of overwintering in the warm room on hibernation. The upregulated miRNAs likely were responsible for the suppression of oocyte maturation in the breeding season. Finally, DNA methylome changes, especially hypomethylation, were found to play an important role in the alterations in ovarian function-related gene expression induced by non-hibernation. CONCLUSIONS: Our study revealed the crucial role of hibernation quality for oocyte maturation in the Chinese alligator and the underlying genetic and epigenetic mechanisms, and highlights the importance of habitat, and especially, the overwintering site, in the conservation of not only the Chinese alligator, but also other endangered hibernators.


Asunto(s)
Caimanes y Cocodrilos , Hibernación , Caimanes y Cocodrilos/genética , Animales , China , Femenino , Masculino , Oocitos , Transcriptoma
9.
Biomolecules ; 10(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549189

RESUMEN

Nuptial plumage coloration is critical in the mating choice of the crested ibis. This species has a characteristic nuptial plumage that develops from the application of a black sticky substance, secreted by a patch of skin in the throat and neck region. We aimed to identify the genes regulating its coloring, by comparing skin transcriptomes between ibises during the breeding and nonbreeding seasons. In breeding season skins, key eumelanin synthesis genes, TYR, DCT, and TYRP1 were upregulated. Tyrosine metabolism, which is closely related to melanin synthesis, was also upregulated, as were transporter proteins belonging to multiple SLC families, which might act during melanosome transportation to keratinocytes. These results indicate that eumelanin is likely an important component of the black substance. In addition, we observed upregulation in lipid metabolism in breeding season skins. We suggest that the lipids contribute to an oil base, which imbues the black substance with water insolubility and enhances its adhesion to feather surfaces. In nonbreeding season skins, we observed upregulation in cell adhesion molecules, which play critical roles in cell interactions. A number of molecules involved in innervation and angiogenesis were upregulated, indicating an ongoing expansion of nerves and blood vessels in sampled skins. Feather ß keratin, a basic component of avian feather filament, was also upregulated. These results are consistent with feather regeneration in the black skin of nonbreeding season ibises. Our results provide the first molecular evidence indicating that eumelanin is the key component of ibis coloration.


Asunto(s)
Aves/genética , Plumas/metabolismo , Pigmentación/genética , Conducta Sexual Animal/fisiología , Transcriptoma , Animales , Aves/fisiología , Plumas/fisiología , Femenino , Perfilación de la Expresión Génica , Masculino , Cuello , Faringe/metabolismo , Reproducción/genética , Estaciones del Año , Pigmentación de la Piel/genética
10.
iScience ; 23(6): 101202, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32534442

RESUMEN

Many ectotherms hibernate in face of the harsh winter conditions to improve their survival rate. However, the molecular mechanism underlying this process remains unclear. Here, we explored the hibernation mechanism of Chinese alligator using integrative multi-omics analysis. We revealed that (1) the thyroid hormone biosynthesis, nutrition absorption and metabolism, muscle contraction, urinary excretion and immunity function pathways are overall downregulated during hibernation; (2) the fat catabolism is completely suppressed, contrasting with the upregulation of hepatic fatty-acid-transporter CPT1A, suggesting a unique energy-saving strategy that differs from that in hibernating mammals; (3) the hibernation-related genes are not only directly regulated by DNA methylation but also controlled by methylation-dependent transcription networks. In addition, we identified and compared tissue-specific, species-specific, and conserved season-biased miRNAs, demonstrating complex post-transcriptional regulation during hibernation. Our study revealed the genetic and epigenetic mechanisms underlying hibernation in the Chinese alligator and provided molecular insights into the evolution of hibernation regulation.

11.
Front Microbiol ; 10: 2409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708889

RESUMEN

As a natural hibernator, the Chinese alligator (Alligator sinensis) is an ideal and intriguing model to investigate changes in microbial community structure and function caused by hibernation. In this study, we used 16S rRNA profiling and metagenomic analysis to compare the composition, diversity, and functional capacity in the gut microbiome of hibernating vs. active Chinese alligators. Our results show that gut microbial communities undergo seasonal restructuring in response to seasonal cycles of feeding and fasting in the Chinese alligator, but this animal harbors a core gut microbial community primarily dominated by Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes across the gut regions. During hibernation, there is an increase in the abundance of bacterial taxa (e.g., the genus Bacteroides) that can degrade host mucin glycans, which allows adaptation to winter fasting. This is accompanied by the enrichment of mucin oligosaccharide-degrading enzyme and carbohydrate-active enzyme families. In contrast, during the active phase (feeding), active Chinese alligators exhibit a carnivore gut microbiome dominated by Fusobacteria, and there is an increase in the relative abundance of bacteria (e.g., Cetobacterium somerae) with known proteolytic and amino acids-fermentating functions that improve host protein-rich food digestion efficiency. In addition, seasonal variations in the expression of ß-defensins play a protective role in intestinal immunity. These findings provide insights into the functional adaptations of host-gut microbe symbioses to seasonal dietary shifts to maintain gut homeostasis and health, especially in extreme physiological states.

12.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315288

RESUMEN

Simple sequence repeats (SSRs) are known as microsatellites, and consist of tandem 1-6-base motifs. They have become one of the most popular molecular markers, and are widely used in molecular ecology, conservation biology, molecular breeding, and many other fields. Previously reported methods identify monomorphic and polymorphic SSRs and determine the polymorphic SSRs via experimental validation, which is potentially time-consuming and costly. Herein, we present a new strategy named insertion/deletion (INDEL) SSR (IDSSR) to identify polymorphic SSRs by integrating SSRs with nucleotide insertions/deletions (INDEL) solely based on a single genome sequence and the sequenced pair-end reads. These INDEL indexes and polymorphic SSRs were identified, as well as the number of repeats, repeat motifs, chromosome location, annealing temperature, and primer sequences, enabling future experimental approaches to determine the correctness and polymorphism. Experimental validation with the giant panda demonstrated that our method has high reliability and stability. The efficient SSR pipeline would help researchers obtain high-quality genetic markers for plants and animals of interest, save labor, and reduce costly marker-screening experiments. IDSSR is freely available at https://github.com/Allsummerking/IDSSR.


Asunto(s)
Técnicas de Genotipaje/métodos , Repeticiones de Microsatélite , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Pollos/genética , Mutación INDEL , Ursidae/genética
13.
Genome Biol Evol ; 11(8): 2125-2135, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31298688

RESUMEN

The crested ibis (Nipponia nippon) is endangered worldwide. Although a series of conservation measures have markedly increased the population size and distribution area of these birds, the high mortality of embryos and nestlings considerably decreases the survival potential of this bird species. High-throughput sequencing technology was utilized to compare whole genomes between ten samples from dead crested ibises (including six dead embryos and four dead nestlings aged 0-45 days) and 32 samples from living birds. The results indicated that the dead samples all shared the genetic background of a specific ancestral subpopulation. Furthermore, the dead individuals were less genetically diverse and suffered higher degrees of inbreeding compared with these measures in live birds. Several candidate genes (KLHL3, SETDB2, TNNT2, PKP1, AK1, and EXOSC3) associated with detrimental diseases were identified in the genomic regions that differed between the alive and dead samples, which are likely responsible for the death of embryos and nestlings. In addition, in these regions, we also found several genes involved in the protein catabolic process (UBE4A and LONP1), lipid metabolism (ACOT1), glycan biosynthesis and metabolism (HYAL1 and HYAL4), and the immune system (JAM2) that are likely to promote the normal development of embryos and nestlings. The aberrant conditions of these genes and biological processes may contribute to the death of embryos and nestlings. Our data identify congenital factors underlying the death of embryos and nestlings at the whole genome level, which may be useful toward informing more effective conservation efforts for this bird species.


Asunto(s)
Enfermedades de las Aves/mortalidad , Aves/embriología , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica , Genoma , Comportamiento de Nidificación , Polimorfismo de Nucleótido Simple , Animales , Enfermedades de las Aves/congénito , Enfermedades de las Aves/genética , Embrión no Mamífero/metabolismo , Genética de Población , Mortalidad
14.
J Anim Ecol ; 88(11): 1708-1719, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31332779

RESUMEN

Although vertebrates have been reported to gain higher reproductive outputs by choosing mates, few studies have been conducted on threatened species. However, species recovery should benefit if natural mate choice could improve reproductive output (i.e. pair performance related to offspring number, such as increased clutch size, numbers of fertilized egg and fledglings). We assessed the evidence for major histocompatibility complex (MHC)-based mate preference in the endangered crested ibis (Nipponia nippon) and quantified the impacts of such choice on reproductive output. We tested the hypothesis that crested ibis advertise "good genes" through external traits, by testing whether nuptial plumage characteristics and body morphology mediate mate choice for underlying genetic MHC variation. We found differences between males and females in preferred MHC genotypes, external traits used in mate choice and contributions to reproductive outputs. Females preferred MHC-heterozygous males, which had darker [i.e. lower total reflectance and ultraviolet (UV) reflectance] nuptial plumage. Males preferred females lacking the DAB*d allele at the MHC class II DAB locus, which had higher average body mass. DAB*d-free females yielded heavier eggs and more fledglings, while MHC-heterozygous males contributed to more fertilized eggs and fledglings. Fledging rate was highest when both parents had the preferred MHC genotypes (i.e. MHC-heterozygous father and DAB*d-free mother). Comparisons showed that free-mating wild and semi-natural pairs yielded more fertilized eggs and more fledglings, with a higher fledging rate, than captive pairs matched artificially based on pedigree. Conservation programmes seldom apply modern research results to population management, which could hinder recovery of threatened species. Our results show that mate choice can play an important role in improving reproductive output, with an example in which an endangered bird selects mates using UV visual capability. Despite the undoubted importance of pedigree-based matching of mates in conservation programmes, we show that free mating can be a better alternative strategy.


Asunto(s)
Preferencia en el Apareamiento Animal , Nippostrongylus , Animales , Femenino , Genotipo , Complejo Mayor de Histocompatibilidad , Masculino , Óvulo , Reproducción
15.
J Genet ; 98(1)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204713

RESUMEN

The Chinese softshell turtle exhibits ZZ/ZW sex determination. To identify the sex of embryos, juvenile and adult individuals, we designed two pairs of polymerase chain reaction primers, SB1-196, which amplifies a fragment of 196 bp in the female and the other, CK1-482, which amplifies the 482-bp fragment in both the sexes. It is validated in 24 adult turtles of known sex, sampled from three different locations. This one-step sexing technique is rapid and easy to perform and is reported for the first time.


Asunto(s)
Proteínas de Reptiles/genética , Cromosomas Sexuales/genética , Análisis para Determinación del Sexo/métodos , Procesos de Determinación del Sexo , Tortugas/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Hibridación Genómica Comparativa , Cartilla de ADN/genética , Femenino , Masculino , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Ácido Nucleico
16.
Proc Biol Sci ; 286(1900): 20190191, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30966994

RESUMEN

The regulation of population density is suggested to be indirect and occurs with a time-lag effect, as well as being female centred. Herein, we present a quantitative analysis on the precise, timely and male-dominated self-regulation of Chinese alligator ( Alligator sinensis) populations. Analysis of 31 years of data revealed gender differences in regulation patterns. Population dynamics were restricted by male density rather than population density, and population growth was halted (birth rate = 0) when male density exceeded 83.14 individuals per hectare, until some males were removed, especially adult males. This rapid and accurate response supports the notions of intrinsic mechanisms and population-wide regulation response. Furthermore, density stress affected mating success rather than parental care to juveniles, i.e. females avoided unnecessary reproduction costs, which may represent an evolutionary advantage. Our findings highlighted the importance of further studies on related physiological mechanisms that focus on four characteristics: quantity breeds quality, gender differences, male density thresholds and nonlinearity.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Animales , China , Masculino , Densidad de Población , Dinámica Poblacional , Reproducción
17.
Cells ; 8(4)2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027280

RESUMEN

Investigating adaptive potential and understanding the relative roles of selection and genetic drift in populations of endangered species are essential in conservation. Major histocompatibility complex (MHC) genes characterized by spectacular polymorphism and fitness association have become valuable adaptive markers. Herein we investigate the variation of all MHC class I and II genes across seven populations of an endangered bird, the crested ibis, of which all current individuals are offspring of only two pairs. We inferred seven multilocus haplotypes from linked alleles in the Core Region and revealed structural variation of the class II region that probably evolved through unequal crossing over. Based on the low polymorphism, structural variation, strong linkage, and extensive shared alleles, we applied the MHC haplotypes in population analysis. The genetic variation and population structure at MHC haplotypes are generally concordant with those expected from microsatellites, underlining the predominant role of genetic drift in shaping MHC variation in the bottlenecked populations. Nonetheless, some populations showed elevated differentiation at MHC, probably due to limited gene flow. The seven populations were significantly differentiated into three groups and some groups exhibited genetic monomorphism, which can be attributed to founder effects. We therefore propose various strategies for future conservation and management.


Asunto(s)
Aves/genética , Complejo Mayor de Histocompatibilidad/genética , Repeticiones de Microsatélite/genética , Alelos , Secuencia de Aminoácidos/genética , Animales , Especies en Peligro de Extinción , Exones/genética , Efecto Fundador , Frecuencia de los Genes/genética , Genes MHC Clase II/genética , Flujo Genético , Variación Genética/genética , Genética de Población/métodos , Haplotipos/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Filogenia , Polimorfismo Genético/genética , Selección Genética/genética
18.
Cells ; 8(3)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893784

RESUMEN

Few major histocompatibility complex (MHC)-based mate choice studies include all MHC genes at the inter-individual, sperm-egg, and mother-fetus recognition levels. We tested three hypotheses of female mate choice in a 17-year study of the giant panda (Ailuropoda melanoleuca) while using ten functional MHC loci (four MHC class I loci: Aime-C, Aime-F, Aime-I, and Aime-L; six MHC class II loci: Aime-DRA, Aime-DRB3, Aime-DQA1, Aime-DQA2, Aime-DQB1, and Aime-DQB2); five super haplotypes (SuHa, SuHaI, SuHaII, DQ, and DR); and, seven microsatellites. We found female choice for heterozygosity at Aime-C, Aime-I, and DQ and for disassortative mate choice at Aime-C, DQ, and DR at the inter-individual recognition level. High mating success occurred in MHC-dissimilar mating pairs. No significant results were found based on any microsatellite parameters, suggesting that MHCs were the mate choice target and there were no signs of inbreeding avoidance. Our results indicate Aime-DQA1- and Aime-DQA2-associated disassortative selection at the sperm-egg recognition level and a possible Aime-C- and Aime-I-associated assortative maternal immune tolerance mechanism. The MHC genes were of differential importance at the different recognition levels, so all of the functional MHC genes should be included when studying MHC-dependent reproductive mechanisms.


Asunto(s)
Feto/fisiología , Complejo Mayor de Histocompatibilidad/genética , Óvulo/fisiología , Reproducción/genética , Espermatozoides/fisiología , Ursidae/genética , Ursidae/fisiología , Alelos , Animales , Femenino , Variación Genética , Haplotipos/genética , Heterocigoto , Homocigoto , Masculino , Repeticiones de Microsatélite/genética
19.
Heredity (Edinb) ; 122(6): 809-818, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30670843

RESUMEN

The major histocompatibility complex (MHC) has several important roles in kin recognition, pathogen resistance and mate selection. Research in fish, birds and mammals has suggested that individuals optimise MHC diversity, and therefore offspring fitness, when choosing mates. In reptiles, however, it is unclear whether female mate choice is based on genome-wide genetic characteristics such as microsatellite DNA loci, particular functional-trait loci (e.g., MHC) or both, and MHC's effects on mate choice remain relatively understudied. Herein, we used 13 microsatellite loci and two MHC class I loci to investigate female mate choice of Chinese alligators (Alligator sinensis) in the semi-natural condition. We also determined correlations between the MHC genotype of breeding males and male reproductive success. We found that MHC-heterozygous males harbour a greater reproductive success, which probably is the reason that these males are more preferred by the females than MHC-homozygous males. Furthermore, the MHC class I amino-acid distance and functional distance of true mating pairs were higher compared with those of randomly sampled pairs. Analysis of microsatellites revealed that, despite mate choice, females did not completely avoid inbreeding. These findings are the first evidence of MHC-associated mate choice in Chinese alligators, suggesting that females may adopt different mating strategies after assessing the MHC characteristics of potential mates.


Asunto(s)
Caimanes y Cocodrilos/genética , Complejo Mayor de Histocompatibilidad , Caimanes y Cocodrilos/fisiología , Animales , China , Femenino , Genotipo , Endogamia , Masculino , Repeticiones de Microsatélite , Reproducción , Conducta Sexual Animal
20.
Genome Biol Evol ; 10(9): 2168-2177, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107398

RESUMEN

The giant panda (Ailuropoda melanoleuca) is popular around the world and is widely recognized as a symbol of nature conservation. A draft genome of the giant panda is now available, but its Y chromosome has not been sequenced. Y chromosome data are necessary for study of sex chromosome evolution, male development, and spermatogenesis. Thus, in the present study, we sequenced two parts of the giant panda Y chromosome utilizing a male giant panda fosmid library. The sequencing data were assembled into two contigs, each ∼100 kb in length with no gaps, providing high-quality resources for studying the giant panda Y chromosome. Annotation and transposable element comparison indicates varied evolutionary pressure in different regions of the Y chromosome. Two genes, zinc finger protein, Y-linked (ZFY) and lysine demethylase 5D (KDM5D), were annotated and gene conversion was observed for ZFY exon 7. Phylogenetic analysis also revealed that this gene conversion event happened independently in multiple mammalian lineages, indicating a putative mechanism to maintain the function of this particular gene on the Y chromosome. Furthermore, a transposition event, discovered through comparative alignment with the giant panda X chromosome sequence, may be involved in the process of gaining new genes on the Y chromosome. Thus, these newly obtained Y chromosome sequences provide valuable insights into the genomic patterns of the giant panda.


Asunto(s)
Conversión Génica , Ursidae/genética , Cromosoma Y/genética , Animales , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...