Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456504

RESUMEN

SARS-CoV-2 spike-based vaccines are used to control the COVID-19 pandemic. However, emerging variants have become resistant to antibody neutralization and further mutations may lead to full resistance. We tested whether T cells alone could provide protection without antibodies. We designed a T cell-based vaccine in which SARS-CoV-2 spike sequences were rearranged and attached to ubiquitin. Immunization of mice with the vaccine induced no specific antibodies, but strong specific T cell responses. We challenged mice with SARS-CoV-2 wild-type strain or an Omicron variant after the immunization and monitored survival or viral titers in the lungs. The mice were significantly protected against death and weight loss caused by the SARS-CoV-2 wild-type strain, and the viral titers in the lungs of mice challenged with the SARS-CoV-2 wild-type strain or the Omicron variant were significantly reduced. Importantly, depletion of CD4+ or CD8+ T cells led to significant loss of the protection. Our analyses of spike protein sequences of the variants indicated that fewer than one-third presented by dominant HLA alleles were mutated and that most of the mutated epitopes were in the subunit 1 region. As the subunit 2 region is conservative, the vaccines targeting spike protein are expected to protect against future variants due to the T cell responses.


Asunto(s)
COVID-19 , Vacunas , Animales , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunas contra la COVID-19
2.
Elife ; 122023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991488

RESUMEN

SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what causes these conformational changes or how they influence the spike's functions. Here, we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability and mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica
3.
Res Sq ; 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34611654

RESUMEN

SARS-CoV-2 spike protein plays a key role in viral entry and host immune responses. The conformation of the spike protein can be either open or closed, yet it is unclear how the conformations affect the protein's functions or what regulate the conformational changes. Using SARS-CoV-1 and bat RaTG13-CoV as comparisons, we identified two molecular switches that regulate the conformations of SARS-CoV-2 spike protein: (i) a furin motif loop turns SARS-CoV-2 spike from a closed conformation to a mixture of open and closed conformations, and (ii) a K417V mutation turns SARS-CoV-2 spike from mixed conformations to an open conformation. We showed that the open conformation favors viral potency by exposing the RBD for receptor binding and viral entry, whereas the closed conformation supports viral immune evasion by hiding the RBD from neutralizing antibodies. Hence SARS-CoV-2 spike has evolved to reach a balance between potency and immune evasiveness, which may contribute to the pandemic spread of SARS-CoV-2. The dynamics between viral potency and invasiveness is likely to further evolve, providing insights into future evolution of SARS-CoV-2.

4.
PLoS Pathog ; 17(9): e1009897, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34492082

RESUMEN

The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Nanopartículas/uso terapéutico , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Diseño de Fármacos , Femenino , Células HEK293 , Humanos , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos/inmunología
5.
Elife ; 102021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34338634

RESUMEN

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Pandemias , Unión Proteica , Conformación Proteica , Receptores Virales/inmunología , Receptores Virales/metabolismo , Anticuerpos de Dominio Único/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
bioRxiv ; 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33236012

RESUMEN

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a novel series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking out viral receptor ACE2. The lead drug possessing an Fc tag ( Nanosota-1C-Fc ) bound to SARS-CoV-2 RBD with a K d of 15.7picomolar (∼3000 times more tightly than ACE2 did) and inhibited SARS-CoV-2 infection with an ND 50 of 0.16microgram/milliliter (∼6000 times more potently than ACE2 did). Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy in hamsters subjected to SARS-CoV-2 infection. Unlike conventional antibody drugs, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-F c documented a greater than 10-day in vivo half-life efficacy and high tissue bioavailability. Nanosota-1C-Fc is a potentially effective and realistic solution to the COVID-19 pandemic. IMPACT STATEMENT: Potent and low-cost Nanosota-1 drugs block SARS-CoV-2 infections both in vitro and in vivo and act both preventively and therapeutically.

7.
Proc Natl Acad Sci U S A ; 117(21): 11727-11734, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32376634

RESUMEN

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Understanding how SARS-CoV-2 enters human cells is a high priority for deciphering its mystery and curbing its spread. A virus surface spike protein mediates SARS-CoV-2 entry into cells. To fulfill its function, SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) through its receptor-binding domain (RBD) and is proteolytically activated by human proteases. Here we investigated receptor binding and protease activation of SARS-CoV-2 spike using biochemical and pseudovirus entry assays. Our findings have identified key cell entry mechanisms of SARS-CoV-2. First, SARS-CoV-2 RBD has higher hACE2 binding affinity than SARS-CoV RBD, supporting efficient cell entry. Second, paradoxically, the hACE2 binding affinity of the entire SARS-CoV-2 spike is comparable to or lower than that of SARS-CoV spike, suggesting that SARS-CoV-2 RBD, albeit more potent, is less exposed than SARS-CoV RBD. Third, unlike SARS-CoV, cell entry of SARS-CoV-2 is preactivated by proprotein convertase furin, reducing its dependence on target cell proteases for entry. The high hACE2 binding affinity of the RBD, furin preactivation of the spike, and hidden RBD in the spike potentially allow SARS-CoV-2 to maintain efficient cell entry while evading immune surveillance. These features may contribute to the wide spread of the virus. Successful intervention strategies must target both the potency of SARS-CoV-2 and its evasiveness.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Línea Celular , Humanos , Evasión Inmune , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Dominios Proteicos , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Activación Viral
8.
Nature ; 581(7807): 221-224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32225175

RESUMEN

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zoonosis/virología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , China/epidemiología , Quirópteros/virología , Coronavirus/química , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cristalización , Cristalografía por Rayos X , Reservorios de Enfermedades/virología , Euterios/virología , Humanos , Modelos Moleculares , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/epidemiología , Zoonosis/transmisión
9.
PLoS Pathog ; 16(3): e1008392, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150576

RESUMEN

Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses.


Asunto(s)
Antígeno Carcinoembrionario/química , Virus de la Hepatitis Murina/química , Virus de la Hepatitis Murina/fisiología , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus , Animales , Antígeno Carcinoembrionario/metabolismo , Antígeno Carcinoembrionario/ultraestructura , Línea Celular Tumoral , Microscopía por Crioelectrón , Células HEK293 , Humanos , Fusión de Membrana , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Proteolisis , Receptores Virales/metabolismo , Receptores Virales/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Acoplamiento Viral
10.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31996437

RESUMEN

Recently, a novel coronavirus (2019-nCoV) has emerged from Wuhan, China, causing symptoms in humans similar to those caused by severe acute respiratory syndrome coronavirus (SARS-CoV). Since the SARS-CoV outbreak in 2002, extensive structural analyses have revealed key atomic-level interactions between the SARS-CoV spike protein receptor-binding domain (RBD) and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. Here, we analyzed the potential receptor usage by 2019-nCoV, based on the rich knowledge about SARS-CoV and the newly released sequence of 2019-nCoV. First, the sequence of 2019-nCoV RBD, including its receptor-binding motif (RBM) that directly contacts ACE2, is similar to that of SARS-CoV, strongly suggesting that 2019-nCoV uses ACE2 as its receptor. Second, several critical residues in 2019-nCoV RBM (particularly Gln493) provide favorable interactions with human ACE2, consistent with 2019-nCoV's capacity for human cell infection. Third, several other critical residues in 2019-nCoV RBM (particularly Asn501) are compatible with, but not ideal for, binding human ACE2, suggesting that 2019-nCoV has acquired some capacity for human-to-human transmission. Last, while phylogenetic analysis indicates a bat origin of 2019-nCoV, 2019-nCoV also potentially recognizes ACE2 from a diversity of animal species (except mice and rats), implicating these animal species as possible intermediate hosts or animal models for 2019-nCoV infections. These analyses provide insights into the receptor usage, cell entry, host cell infectivity and animal origin of 2019-nCoV and may help epidemic surveillance and preventive measures against 2019-nCoV.IMPORTANCE The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/química , Neumonía Viral/virología , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/clasificación , COVID-19 , China , Quirópteros/virología , Especificidad del Huésped , Humanos , Modelos Moleculares , Filogenia , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Alineación de Secuencia
11.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826992

RESUMEN

Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies.IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Línea Celular , Dipeptidil Peptidasa 4/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Péptido Hidrolasas/metabolismo , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Receptores Fc/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Tripsina/metabolismo
12.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30258004

RESUMEN

Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Lisosomas/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Péptido Hidrolasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Animales , Células Cultivadas , Quirópteros , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Células Vero , Tropismo Viral , Internalización del Virus
13.
Sci Rep ; 7(1): 1729, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28496097

RESUMEN

Hepatitis B virus (HBV) infection causes acute hepatitis B (AHB), chronic hepatitis B (CHB), liver cirrhosis (LC), and eventually hepatocellular carcinoma (HCC). The presence of hepatitis B e antigen (HBeAg) in the serum generally indicates ongoing viral replication and disease progression. However, the mechanism by which HBeAg regulates HBV infection remains unclear. Interferons (IFNs) are pleiotropic cytokines that participate in host innate immunity. After binding to receptors, IFNs activate the JAK/STAT pathway to stimulate expression of IFN-stimulated genes (ISGs), leading to induction of antiviral responses. Here, we revealed that HBeAg represses IFN/JAK/STAT signaling to facilitate HBV replication. Initially, HBeAg stimulates the expression of suppressor of cytokine signaling 2 (SOCS2). Subsequently, SOCS2 impairs IFN/JAK/STAT signaling through reducing the stability of tyrosine kinase 2 (TYK2), downregulating the expression of type I and III IFN receptors, attenuating the phosphorylation and nucleus translocation of STAT1. Finally, SOCS2 inhibits the expression of ISGs, which leads to the repression of IFN action and facilitation of viral replication. These results demonstrate an important role of HBeAg in the regulation of IFN action, and provide a possible molecular mechanism by which HBV resists the IFN therapy and maintains persistent infection.


Asunto(s)
Antígenos e de la Hepatitis B/metabolismo , Interferones/farmacología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Antivirales/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores de Interferón/metabolismo , Factor de Transcripción STAT1/metabolismo , TYK2 Quinasa/metabolismo
14.
J Innate Immun ; 9(4): 419-435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28376501

RESUMEN

Guanylate binding protein (GBP) 5 belongs to the GBP family, which is involved in important cellular processes, including signal transduction, translation, vesicle trafficking, and exocytosis. Structurally, GBPs display a high degree of homology and share highly conserved GTP-binding or hydrolysis domains. GBP5 was reported to be a critical cellular factor in inflammasome assembly. However, little is known about its role in the host antiviral innate immune response. In this study, we found that GBP5 expression was significantly elevated in influenza patients and influenza A virus-infected A549 human lung epithelial cells. The overexpression of GBP5 inhibited virus replication by enhancing the expression of virus-induced interferon (IFN) and IFN-related effectors. Knockdown of GBP5 had the opposite effect. Moreover, GBP5 enhanced endogenous IFN expression by interacting with the NF-κB-essential modulator complex and stimulating NF-κB signaling. Additionally, the expression of proinflammatory factors, such as IL-6, IL-8, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase, was also activated by GBP5. Taken together, our results reveal that GBP5 inhibited virus replication through the activation of IFN signaling and proinflammatory factors.


Asunto(s)
Proteínas de Unión al GTP/genética , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interferones/metabolismo , Mucosa Respiratoria/inmunología , Células A549 , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Interferente Pequeño/genética , Mucosa Respiratoria/virología , Transducción de Señal , Replicación Viral
15.
Cell Mol Immunol ; 14(7): 607-620, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28392573

RESUMEN

The RUN domain Beclin-1-interacting cysteine-rich-containing (Rubicon) protein is involved in the maturation step of autophagy and the endocytic pathway as a Beclin-1-binding partner, but little is known regarding the role of Rubicon during viral infection. Here, we performed functional studies of the identified target in interferon (IFN) signaling pathways associated with Rubicon to elucidate the mechanisms of viral resistance to IFN. The Rubicon protein levels were elevated in peripheral blood mononuclear cells, sera and liver tissues from patients with hepatitis B virus (HBV) infection relative to those in healthy individuals. Assays of the overexpression and knockdown of Rubicon showed that Rubicon significantly promoted HBV replication. In addition, Rubicon knockdown resulted in the inhibition of enterovirus 71, influenza A virus and vesicular stomatitis virus. The expression o0f Rubicon led to the suppression of virus-induced type-I interferon (IFN-α and IFN-ß) and type-III interferon (IFN-λ1). Translocation of activated IRF3 and IRF7 from the cytoplasm to the nucleus was involved in this process, and the NF-κB essential modulator (NEMO), a key factor in the IFN pathway, was the target with which Rubicon interacted. Our results reveal a previously unrecognized function of Rubicon as a virus-induced protein that binds to NEMO, leading to the inhibition of type-I interferon production. Rubicon thus functions as an important negative regulator of the innate immune response, enhances viral replication and may play a role in viral immune evasion.


Asunto(s)
Interferones/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Replicación Viral , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Hepatocitos/metabolismo , Humanos , Quinasa I-kappa B , Modelos Biológicos , Fosforilación , Unión Proteica , Ubiquitinación
16.
PLoS One ; 11(3): e0152721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023403

RESUMEN

Fibronectin (FN) is a high molecular weight extracellular matrix protein that functions in cell adhesion, growth, migration, and embryonic development. However, little is known about the role of FN during viral infection. In the present study, we found significantly higher levels of FN in sera, and liver tissues from hepatitis B virus (HBV) patients relative to healthy individuals. HBV expression enhanced FN mRNA and protein levels in the hepatic cell lines Huh7 and HepG2. HBV infection of susceptible HepG2-sodium taurocholate co-transporting polypeptide cells also increased FN expression. We also found that transcriptional factor specificity protein 1 was involved in the induction of FN by HBV. Knockdown of FN expression significantly inhibited HBV DNA replication and protein synthesis through activating endogenous IFN-α production. In addition, FN interacted with the transforming growth factor ß-activated protein kinase 1 (TAK1) and TAK1-binding protein complex and attenuated interferon signaling by inhibiting TAK1 phosphorylation. Furthermore, the nuclear translocation of NF-κB/p65 was found to be inhibited by FN. We also observed that FN promoted HBV enhancers to support HBV expression. These results suggest novel functions of endogenous FN involved in immune evasion and maintenance of HBV replication.


Asunto(s)
Fibronectinas/metabolismo , Virus de la Hepatitis B/metabolismo , Replicación Viral , Adulto , Elementos de Facilitación Genéticos/genética , Femenino , Fibronectinas/genética , Células HEK293 , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/virología , Humanos , Interferón-alfa/farmacología , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Factor de Transcripción Sp1/metabolismo , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos
17.
FEBS Lett ; 589(24 Pt B): 4112-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26602079

RESUMEN

Little is known about the role of microRNA during influenza A virus (IAV) infection. We observed that NIK 3'UTR luciferase activity was elevated during IAV infection. Further studies demonstrated that miR-302c reduced NIK expression, resulting in the reduction of IFNß mRNA expression. We found that miR-302c prevented the translocation of NF-κB from the cytosol to the nucleus. Furthermore, IAV infection downregulated miR-302c expression, leading to the activation of IFNß expression and the inhibition of viral replication. Compared to miR-302c, miR-520e cannot promote viral replication and production, although the two microRNAs target the same site of the NIK 3'UTR. Collectively, our work defines a novel signaling pathway implicated in the control of IFNß mRNA expression during IAV infection.


Asunto(s)
Inmunidad Innata , Inmunidad Mucosa , Subtipo H3N2 del Virus de la Influenza A/inmunología , Interferón beta/antagonistas & inhibidores , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Mucosa Respiratoria/inmunología , Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Represión Enzimática , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Subtipo H3N2 del Virus de la Influenza A/fisiología , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/antagonistas & inhibidores , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/agonistas , Interferón beta/genética , Interferón beta/metabolismo , FN-kappa B/agonistas , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Mucosa Respiratoria/enzimología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Elementos de Respuesta , Transducción de Señal , Replicación Viral , Quinasa de Factor Nuclear kappa B
18.
J Immunol ; 194(6): 2757-68, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25681344

RESUMEN

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, usually resulting in persistent infection involving hepatic steatosis, cirrhosis, and hepatocellular carcinoma via escape of the host's immune response. Set7 is a lysine-specific methyltransferase that is involved in gene regulation and virus replication. However, the mechanism underlying the immune evasion between HCV and Set7 is not well understood. In this study, we observed that the expression of Set7 in Huh7.5.1 cells was upregulated by HCV infection, and high levels of Set7 expression were also found in the sera, PBMCs, and liver tissue of HCV patients relative to healthy individuals. Further investigation showed that Set7 enhanced HCV replication in an enzymatic activity-dependent manner. Moreover, our data showed that Set7 decreased the expression of virus-induced IFN and IFN-related effectors, such as dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase. Further investigation suggested that Set7 suppressed the endogenous IFN expression by reducing the nuclear translocation of IFN regulatory factor 3/7 and the p65 subunit of NF-κB and reduced IFN-induced dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase via attenuation of the phosphorylation of STAT1 and STAT2. Additionally, IFN receptors, including IFNAR1 and IFNAR2, which are located upstream of the JAK/STAT pathway, were reduced by Set7. Taken together, our results reveal that Set7 facilitates HCV replication through the attenuation of IFN signaling pathways and IFN-related effectors.


Asunto(s)
Hepacivirus/inmunología , N-Metiltransferasa de Histona-Lisina/inmunología , Interferón-alfa/inmunología , Transducción de Señal/inmunología , Replicación Viral/inmunología , Adulto , Western Blotting , Línea Celular , Línea Celular Tumoral , Femenino , Expresión Génica/inmunología , Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis Crónica/genética , Hepatitis Crónica/inmunología , Hepatitis Crónica/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferón-alfa/genética , Interferón-alfa/metabolismo , Masculino , Persona de Mediana Edad , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
19.
J Biol Chem ; 288(29): 20927-20941, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23729669

RESUMEN

Interleukin (IL)-32 has been recognized as a proinflammatory cytokine that participates in responses to viral infection. However, little is known about how IL-32 is induced in response to viral infection and the mechanisms of IL-32-mediated antiviral activities. We discovered that IL-32 is elevated by hepatitis B virus (HBV) infection both in vitro and in vivo and that HBV induced IL-32 expression at the level of both transcription and post-transcription. Furthermore, microRNA-29b was found to be a key factor in HBV-regulated IL-32 expression by directly targeting the mRNA 3'-untranslated region of IL-32. Antiviral analysis showed that IL-32 was not sufficient to alter HBV replication in HepG2.2.15 cells. To mimic the viremic phase of viral infection, freshly isolated peripheral blood mononuclear cells were treated with IL-32γ, the secretory isoform, and the supernatants were used for antiviral assays. Surprisingly, these supernatants exhibited extensive antiviral activity against multiplex viruses besides HBV. Thus, we speculated that the IL-32γ-treated peripheral blood mononuclear cells produced and secreted an unknown antiviral factor. Using antibody neutralization assays, we identified the factor as interferon (IFN)-λ1 and not IFN-α. Further studies indicated that IL-32γ effectively inhibited HBV replication in a hydrodynamic injection mouse model. Clinical data showed that elevated levels of IFN-λ1 both in serum and liver tissue of HBV patients were positively correlated to the increased levels of IL-32. Our results demonstrate that elevated IL-32 levels during viral infection mediate antiviral effects by stimulating the expression of IFN-λ1.


Asunto(s)
Antivirales/metabolismo , Virus de la Hepatitis B/fisiología , Interleucinas/metabolismo , Animales , Sitios de Unión , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/genética , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Humanos , Hidrodinámica , Interferones , Interleucinas/genética , Interleucinas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , FN-kappa B/metabolismo , Proteínas Recombinantes/farmacología , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos
20.
Protein Cell ; 4(2): 130-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23150165

RESUMEN

Interferon (IFN)-mediated pathways are a crucial part of the cellular response against viral infection. Type III IFNs, which include IFN-λ1, 2 and 3, mediate antiviral responses similar to Type I IFNs via a distinct receptor complex. IFN-λ1 is more effective than the other two members. Transcription of IFN-λ1 requires activation of IRF3/7 and nuclear factor-kappa B (NF-κB), similar to the transcriptional mechanism of Type I IFNs. Using reporter assays, we discovered that viral infection induced both IFN-λ1 promoter activity and that of the 3'-untranslated region (UTR), indicating that IFN-λ1 expression is also regulated at the post-transcriptional level. After analysis with microRNA (miRNA) prediction programs and 3'UTR targeting site assays, the miRNA-548 family, including miR-548b-5p, miR-548c-5p, miR-548i, miR-548j, and miR-548n, was identified to target the 3'UTR of IFN-λ1. Further study demonstrated that miRNA-548 mimics down-regulated the expression of IFN-λ1. In contrast, their inhibitors, the complementary RNAs, enhanced the expression of IFN-λ1 and IFN-stimulated genes. Furthermore, miRNA-548 mimics promoted infection by enterovirus-71 (EV71) and vesicular stomatitis virus (VSV), whereas their inhibitors significantly suppressed the replication of EV71 and VSV. Endogenous miRNA-548 levels were suppressed during viral infection. In conclusion, our results suggest that miRNA-548 regulates host antiviral response via direct targeting of IFN-λ1, which may offer a potential candidate for antiviral therapy.


Asunto(s)
Antivirales/farmacología , Regulación hacia Abajo/efectos de los fármacos , Interleucinas/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Adulto , Antivirales/uso terapéutico , Secuencia de Bases , Femenino , Células Hep G2 , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/patología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferones , Interleucinas/antagonistas & inhibidores , Interleucinas/genética , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Poli I-C/farmacología , Poli I-C/uso terapéutico , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...