Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 192: 114830, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147519

RESUMEN

The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.


Asunto(s)
Citrus , Emulsiones , Geles , Ácido Glicirrínico , Nanofibras , Compuestos Orgánicos , Emulsiones/química , Ácido Glicirrínico/química , Citrus/química , Nanofibras/química , Compuestos Orgánicos/química , Geles/química , Reología , Viscosidad
2.
Langmuir ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169607

RESUMEN

The crucial role of zwitterionic phosphatidylcholines (PC) within mucus gel is essential for maintaining intestinal homeostasis, while the underlying mechanism remains incompletely understood. Herein, we compared the dynamic interfacial adsorption behavior of saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated dioleoylphosphatidylcholine (DOPC) to intestinal mucin and their impact on the intestinal mucus barrier function. Results of quartz crystal microbalance with dissipation showed that the highly surface-hydrated DPPC vesicles exhibited significantly faster and more extensive adsorption to purified intestinal mucin than the slightly surface-hydrated DOPC vesicles. Utilizing an intestinal Caco-2/HT29-MTX coculture model, we observed that DPPC vesicles adsorbed much more to the mucus gel compared to DOPC vesicles. Additionally, DPPC vesicle adsorption displayed increased wetting, and converse for DOPC vesicles. Interestingly, both of them exhibited nearly the same protective effects against cell injury induced by peptic-tryptic digests of gliadin (PTG). The partial mechanism involved the binding of PTG to DPPC and DOPC within the mucus gel, thereby restricting PTG contact with the underlying epithelial cells. These findings shed light on the intricate interfacial dynamics of PC adsorption to mucin and their implications for maintaining the integrity of the intestinal mucus barrier.

3.
J Agric Food Chem ; 72(29): 16438-16448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981019

RESUMEN

Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicósidos , Solubilidad , Edulcorantes , Diterpenos de Tipo Kaurano/química , Edulcorantes/química , Glicósidos/química , Agua/química , Micelas , Enlace de Hidrógeno , Gusto , Glucósidos/química , Stevia/química , Soluciones/química
4.
Nanoscale ; 16(30): 14261-14268, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38896015

RESUMEN

We develop a novel hierarchically structured hydrogel by the supramolecular self-assembly of all-natural food-grade building blocks, glycyrrhizic acid (GA) and carrageenan (CG). The co-assembled GA-CG hydrogel system displays an unusual structural transition with the appearance from opacity to translucence and then to opacity, as a function of the concentration of metal ions. The unique GA-CG supramolecular hydrogel system can serve as solid, edible, and responsive active cargo delivery platforms for food and biomedical applications.

5.
Bioact Mater ; 35: 31-44, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304916

RESUMEN

Skin microbiota plays an important role in wound healing, but skin injuries are highly susceptible to wound infections, leading to disruption of the skin microbiota. However, conventional antibacterial hydrogels eliminate both probiotics and pathogenic bacteria, disrupting the balance of the skin microbiota. Therefore, it is important to develop a wound dressing that can fend off foreign pathogenic bacteria while preserving skin microbiota stability. Inspired by live bacteria therapy, we designed a probiotic hydrogel (HAEPS@L.sei gel) with high viability for promoting wound healing. Lactobacillus paracasei TYM202 encapsulated in the hydrogel has the activity of promoting wound healing, and the hydrogel matrix EPS-M76 has the prebiotic activity that promotes the proliferation and metabolism of Lactobacillus paracasei TYM202. During the wound healing process, HAEPS@L.sei gel releases lactic acid and acetic acid to resist the growth of pathogenic bacteria while maintaining Firmicutes and Proteobacteria balance at the phylum level, thus preserving skin microbiota stability. Our results showed that live probiotic hydrogels reduce the incidence of inflammation during wound healing while promoting angiogenesis and increasing collagen deposition. This study provides new ideas for developing wound dressings predicated on live bacterial hydrogels.

6.
Soft Matter ; 20(6): 1173-1185, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38164656

RESUMEN

Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.


Asunto(s)
Ácido Glicirrínico , Agua , Tensión Superficial , Propiedades de Superficie , Reología , Emulsiones , Agua/química , Adsorción
7.
J Agric Food Chem ; 72(2): 1266-1275, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38109330

RESUMEN

Soy protein is widely known to have serum triglyceride (TG) and cholesterol-lowering effects associated with a reduced risk of cardiovascular disease. Recent studies highlighted that the extension region (ER) domain of soy 7S globulin (ß-conglycinin) is a key component responsible for the serum TG-lowering effect via modulation of bile acid (BA) homeostasis. Here, we studied the sequestration of BAs by ER peptides during intestinal digestion in vitro and assessed the anti-inflammatory effects of ER peptides using Caco-2/HT29-MTX/RAW264.7 triple-cell cocultures as an intestine cell model. Results show that ER peptides, which share characteristics of intrinsically disordered regions (IDRs), are capable of forming peptide condensates and exhibit the capability to sequester BA-containing colloidal structures during intestinal digestion in vitro. Moreover, BAs enhance the penetration of peptide condensates within the mucus layer, enabling ER peptides to mitigate lipopolysaccharide (LPS)-induced gut inflammation. These results provide a possible explanation for the molecular mechanisms underlying the modulation of BA homeostasis by soybean proteins.


Asunto(s)
Lipopolisacáridos , Proteínas de Soja , Humanos , Proteínas de Soja/química , Lipopolisacáridos/efectos adversos , Ácidos y Sales Biliares , Células CACO-2 , Péptidos/farmacología , Péptidos/química , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
8.
Curr Res Food Sci ; 7: 100584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711906

RESUMEN

In this study, a functional composite membrane was facilely fabricated by using a dual nanofibril system of bacterial cellulose (BC) and chitin (CH) nanofibrils as bio-based building blocks. The BC-CH membranes with enhanced antibacterial activity were constructed by incorporation of all-natural bioactive nanoparticles (GBTPs), which were formed by spontaneous molecular interactions of three naturally occurring active small molecules, i.e., glycyrrhizic acid (GA), berberine (BR), and tannic acid (TA). The microstructure, physicochemical properties, and antibacterial behaviors of the resulting BC-CH-GBTPs nanocomposites were then characterized. The obtained results showed that the GBTPs with a diameter of around 50-100 nm and membrane matrix were bound by non-covalent interactions, and the addition of GBTPs did not compromise the structural integrity and thermal stability of the composites, which retained good mechanical properties. Furthermore, the addition of GBTPs led to a rougher surface structure and increased the water contact angle of the membrane surfaces from 48.13° to 59.80°. The antimicrobial tests indicate that the BC-CH-GBTPs nanocomposites exhibited significant inhibitory effects against Escherichia coli and Staphylococcus aureus, showing a satisfactory antibacterial ability. These results suggest that the BC-CH-GBTPs nanocomposites based on all-natural, plant-based building blocks, hold promising potentials as active packaging materials for sustainable applications.

9.
ACS Appl Mater Interfaces ; 15(37): 43633-43647, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695942

RESUMEN

Supramolecular hydrogels self-assembled from naturally occurring small molecules (e.g., glycyrrhizic acid, GA) are promising materials for controlled bioactive delivery due to their facile fabrication processes, excellent biocompatibility, and versatile stimuli-responsive behaviors. However, most of these natural hydrogels suffer from poor mechanical strength and processability for practical applications. In this work, through adopting a multicomponent gel approach, we developed a novel mechanically robust GA-based hydrogel with an interpenetrating double network (DN) that is composed of a Ca2+-enhanced hydrogen-bond supramolecular GA nanofibril (GN) network and a Ca2+cross-linked natural polysaccharide sodium alginate (ALG) network. Compared to the single GN network (SN) hydrogel, the GN-ALG hybrid hydrogels (GN-ALG-DN) with the hierarchical double-network structure possess excellent mechanical properties and shaping adaptation, encouraging small and large amplitude oscillatory shear (SAOS and LAOS) rheological performances, better thermal stability, higher resistance to large compression deformations, and lower swelling behaviors. Furthermore, the GN-ALG-DN hydrogels exhibit a pH-responsive and sustained release behavior of nutrients (i.e., vitamin B12, VB12), showing a faster VB12 release rate with a higher swelling ratio in an alkaline condition (pH 7.5) than in an acidic condition (pH 2.5). This is ascribed to the fact that the higher dissociation degree of carboxylic groups in GA and ALG molecules in an alkaline environment induces the erosion and looseness of the self-assembled GN network and the ionic-cross-linked ALG network, which can lead to the decomposition of the hybrid hydrogels and thereby increases the release of nutrients. Cytotoxicity tests further demonstrate the excellent biocompatibility of the GN-ALG-DN hydrogels. This study highlights the design of robust shaped and structured supramolecular hydrogels from natural herb small molecules, which can serve as solid, edible, and stimuli-responsive active cargo delivery platforms for food, biomedical, and sustainable applications.


Asunto(s)
Ácido Glicirrínico , Nutrientes , Ácido Glicirrínico/farmacología , Alimentos , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno
10.
Mol Nutr Food Res ; 67(17): e2200883, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423975

RESUMEN

SCOPE: Soybean 7S globulin (ß-conglycinin), a major soybean storage protein, has been demonstrated to exert remarkable triglyceride (TG) and cholesterol-lowering effects, yet the underlying mechanism remains controversial. METHODS AND RESULTS: A comparative investigation is performed to assess the contribution of different structural domains of soybean 7S globulin, including core region (CR) and extension region (ER) domains, to biological effects of soybean 7S globulin using a high-fat diet rat model. The results show that ER domain mainly contributes to the serum TG-lowering effect of soybean 7S globulin, but not for CR domain. Metabolomics analysis reveals that oral administration of ER peptides obviously influences the metabolic profiling of serum bile acids (BAs), as well as significantly increased the fecal excretion of total BAs. Meanwhile, ER peptides supplementation reshapes the composition of gut microbiota and impacts the gut microbiota-dependent biotransformation of BAs which indicate by a significantly increased secondary BAs concentration in fecal samples. These results highlight that TG-lowering effects of ER peptides mainly stem from their modulation of BAs homeostasis. CONCLUSION: Oral administration of ER peptides can effectively lower serum TG level by regulating BAs metabolism. ER peptides have potential to be used as a candidate pharmaceutical for the intervention of dyslipidemia.

11.
ACS Appl Mater Interfaces ; 15(14): 17562-17576, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36877626

RESUMEN

Bioactive hydrogels self-assembled from naturally occurring herbal small molecules are attracting growing interest for applications in wound healing, due to their versatile intrinsic biological activities, excellent biocompatibility, as well as facile, sustainable, and eco-friendly processes. However, the development of supramolecular herb hydrogels with sufficient strength and multifunctionality as an ideal wound dressing in clinical practice remains a challenge. In this work, inspired by the efficient clinic therapy and directed self-assembly of natural saponin glycyrrhizic acid (GA), we create a novel GA-based hybrid hydrogel to promote full-thickness wound healing and bacterial-infected wound healing. This hydrogel possesses excellent stability and mechanical performance and multifunctional properties, including injectable, shape-adaptation and remodeling, self-healing, and adhesive abilities. This is attributed to the hierarchical dual-network that comprises the self-assembled hydrogen-bond fibrillar network of aldehyde-contained GA (AGA) and the dynamic covalent network through Schiff base reaction between AGA and a biopolymer carboxymethyl chitosan (CMC). Notably, benefiting from the inherent strong biological activity of GA, the AGA-CMC hybrid hydrogel exhibits unique and significant anti-inflammation effects and antibacterial ability, especially toward the Gram-positive Staphylococcus aureus (S. aureus). In vivo experiments demonstrate that the AGA-CMC hydrogel promotes uninfected skin wound healing and S. aureus-infected skin wound healing by enhancing the formation of granulation tissue, facilitating collagen deposition, reducing bacterial infection, and downregulating inflammatory response. This study highlights the design of new and multifunctional bioactive herb hydrogels from natural drug-food homologous small molecules, which can serve as a promising wound-healing dressing for biomedical applications.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/farmacología , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Staphylococcus aureus , Cicatrización de Heridas , Bacterias , Antibacterianos/farmacología
12.
Chem Sci ; 14(5): 1168-1175, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756326

RESUMEN

Biomolecules localize and function in microenvironments where their local concentration, spatial organization, and biochemical reactivity are regulated. To compartmentalize and control the local properties of the native microenvironment, cellular mimics and artificial bioreactors have been developed to study the properties of membraneless organelles or mimic the bio-environment for life origin. Here, we carried out molecular dynamics simulation with the Martini 3.0 model to reproduce the experimental salt concentration and pH dependency of different complex coacervates. We showed that coacervates inside vesicles are able to change their shape. In addition, we used these coacervate systems to explore the partitioning of the ubiquitous cytoskeletal protein actin and found that actin spontaneously partitions to all the coacervate peripheries. Therefore, we believe that our study can provide a better understanding of the versatile coacervate platform, where biomolecules partition and gather to fulfill their biological duties.

13.
J Agric Food Chem ; 71(6): 2999-3009, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36723618

RESUMEN

Soybean 7S storage protein (ß-conglycinin) is the most important allergen, exhibits resistance in gastrointestinal (GI) digestion, and causes allergies in humans and animals. A previous study has demonstrated that 7S proteins contained innate amyloid aggregates, but the fate of these specific protein aggregates in intestinal digestion and correlation to allergenicity are unclear. In this study, via a modified INFOGEST static in vitro digestion and IgE binding test, we illustrate that the survived amyloid aggregates of soybean 7S protein in GI digestion might be dominant IgE epitopes of soybean protein in humans. The impact of conjugated primary bile acid salt (BS) profile on digestion resistance and immunogenicity of soybean protein is assessed, regarding the binding affinity of BS to protein aggregates with consideration of the BS composition and the physiologically relevant colloidal structure. The results show that chenodeoxycholate-containing colloidal structures exhibit high affinity and unfolding capacity to protein amyloid aggregates, promoting proteolysis by pancreatic enzymes and thus mitigating the antigenicity of soybean protein. This study presents a novel understanding of bile acid profile and colloidal structure influence on the digestibility and antigenicity of dietary proteins. It should be helpful to design in vitro digestion protocol and accurately replicate physiologically relevant digestion conditions.


Asunto(s)
Globulinas , Proteínas de Soja , Humanos , Alérgenos , Antígenos de Plantas/química , Ácidos y Sales Biliares/metabolismo , Digestión , Globulinas/química , Inmunoglobulina E/metabolismo , Agregado de Proteínas , Proteínas de Soja/química , Glycine max/química
14.
J Agric Food Chem ; 71(1): 749-759, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534616

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 FAs) are essential nutrients and are considered effective in improving human health. Recent studies highlight the importance of the combination of n-3 FAs and polyphenols for limiting the oxidation of n-3 FAs and exhibiting synergistic beneficial effects. Herein, we developed a novel formulation technology to prepare oleogels that could be used for the codelivery of n-3 FAs and polyphenols with high loading efficacy and oxidative stability. These oleogels are made from algal oil with polyphenol-enriched whey protein microgel (WPM) particles as gelling agents via simple and scalable ball milling technology. The oxidative status, fatty acid composition, and volatiles of protein oleogels during accelerated storage were systematically assessed by stoichiometry and gas chromatography-mass spectrometry. These results showed that protein oleogels could overcome several challenges associated with the formulation of n-3 oils, including long-term oxidative stability and improved sensory and textural properties. The protein oleogel system could provide an excellent convenience for formulating multiple nutrients and nutraceuticals with integrating health effects, which are expected to be used in the care of highly vulnerable populations, including children, the elderly, and patients.


Asunto(s)
Ácidos Grasos Omega-3 , Polifenoles , Niño , Humanos , Anciano , Compuestos Orgánicos/química , Ácidos Grasos Omega-3/química , Ácidos Grasos/química
15.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235079

RESUMEN

Responsive dual-structured emulsions and gel emulsions have attracted more and more attention due to their complex microstructures, on-demand responsive properties, and controlled release of active cargoes. In this work, the effect of monoglyceride (MG)-based oil phase structuring on the formation and stability, structural properties, and thermoresponsive and cargo release behavior of gel emulsions stabilized by glycyrrhizic acid (GA) nanofibrils were investigated. Owing to the formation of GA fibrillar networks in the aqueous phase and MG crystalline networks in the oil phase, a stable dual-structured gel emulsion can be successfully developed. The microstructure of the dual-structured gel emulsions largely depended on the concentration of MG in the oil phase. At low MG concentrations (1-2 wt%), the larger formed and lamellar MG crystals may pierce the interfacial fibrillar film, inducing the formation of partially coalesced droplets. In contrast, at high MG concentrations (4 wt% or above), the smaller MG crystals with enhanced interfacial activity can lead to the formation of a bilayer shell of GA nanofibrils and MG crystals, thus efficiently inhibiting the interfacial film damage and forming a jamming structure with homogeneously distributed small droplets. Compared to pure GA nanofibril gel emulsions, the GA-MG dual-structured gel emulsions showed significantly improved mechanical performance as well as good thermoresponsive behavior. Moreover, these stable GA-MG gel emulsions can be used as food-grade delivery vehicles for encapsulating and protecting hydrophobic and hydrophilic bioactive cargoes. They also have great potential as novel and efficient aroma delivery systems showing highly controlled volatile release. The dual-structured emulsion strategy is expected to broaden the applications of natural saponin GA-based gel emulsions in the food, pharmaceutical, and personal care industries.


Asunto(s)
Ácido Glicirrínico , Saponinas , Preparaciones de Acción Retardada , Emulsiones/química , Glicéridos , Ácido Glicirrínico/química , Monoglicéridos , Saponinas/química , Agua/química
16.
Food Res Int ; 161: 111877, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192993

RESUMEN

The aim of this paper was to explore the synergistic mechanism of the novel Pickering emulsion gels stabilized by zein hydrolysate (ZH, low DH of 5%)-chitin nanocrystals (CNCs) coacervates, and investigate their improvement on the stability and bioaccessibility of curcumin. Interestingly, the ZH with low DH of 5% exhibited aggregated precipitation at pH 5.0. The ZH was absorbed on the surface of CNCs to form ZH-CNCs coacervates by hydrogen bonding and electrostatic neutralization. Moreover, the novel Pickering emulsion gels stabilized by the appropriate ZH-CNCs coacervates showed better rheologicalproperties, emulsion stability and oxidation resistance. As new carriers for curcumin, they could effectively improve the stability and antioxidantactivity (over 90%). Further, the free fatty acid (FFA) release ratewas reduced to below 3.89% and the corresponding bioaccessibility increased to over 80% in vitro digestion. The novel delivery system was potentially designed in foods and pharmaceuticals for the purposes of enhanced stability, delayed lipolysis, or sustained nutrient release.


Asunto(s)
Curcumina , Nanopartículas , Zeína , Quitina , Curcumina/química , Emulsiones/química , Ácidos Grasos no Esterificados , Geles , Tamaño de la Partícula , Zeína/química
17.
Chem Sci ; 13(21): 6205-6216, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35733902

RESUMEN

Microgels are extremely interfacially active and are widely used to stabilize emulsions. However, they are commonly used to stabilize oil-in-water emulsions due to their intrinsic hydrophilicity and initially dispersed in water. In addition, there have been no attempts to control microgel structural layers that are formed at the interface and as a result it limits applications of microgel in advanced materials. Here, we show that by introducing octanol into poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels, octanol-swollen microgels can rapidly diffuse from the initially dispersed oil phase onto the water droplet surface. This facilitates the formation of microgel-laden interfacial layers with strong elastic responses and also generates stable inverse water-in-oil Pickering emulsions. These emulsions can be used as templates to produce microgel colloidosomes, herein termed 'microgelsomes', with shells that can be fine-tuned from a particle monolayer to a well-defined bilayer. The microgelsomes can then be used to encapsulate and/or anchor nanoparticles, proteins, vitamin C, bio-based nanocrystals or enzymes. Moreover, the programmed release of these substances can be achieved by using ethanol as a trigger to mediate shell permeability. Thus, these reconfigurable microgelsomes with a microgel-bilayer shell can respond to external stimuli and demonstrate tailored properties, which offers novel insights into microgels and promise wider application of Pickering emulsions stabilized by soft colloids.

18.
Food Funct ; 13(1): 280-289, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34889340

RESUMEN

Herein, we report a new class of high internal phase gel emulsions (gel-HIPEs) that are mechanically robust, adaptable, and processable. They can be synthesized facilely by using the natural food-grade saponin glycyrrhizic acid (GA) as the sole stabilizer, which is shown to be versatile for various oils. The structural properties of these HIPEs including appearance, viscoelasticity and processability are well controlled by simply changing the concentration of GA nanofibrils. When the GA nanofibril concentration exceeds 0.3 wt%, the unique gel-HIPEs can be produced through the formation of fibrillar hydrogel networks in the continuous phase. When the nanofibril concentration only increases to 5 wt%, it is surprising to see that these gel-HIPEs display an extremely high mechanical strength, and the storage moduli as well as the yield stress values can reach 408.5 kPa and 3340 Pa (or even more), respectively. We conjecture that such remarkable mechanical performance is mainly attributed to the highly viscoelastic GA nanofibrillar networks in the continuous phase of gel-HIPEs, which can actively trap the nanofibril-coated emulsion droplets and thus strengthen the gel matrix. Consequently, the robust gel-HIPEs can be used as a solid template to fabricate stable porous materials without the need for crosslinking of the continuous phase, and the open- and closed-cell foam microstructures are controlled by the nanofibril concentration. Furthermore, the nanofibril-based HIPEs are promising long-term delivery vehicles with controlled-release properties for lipophilic active cargoes, since the strong fibrillar networks at the droplet surfaces and in the continuous phase can effectively retard the active release.


Asunto(s)
Emulsiones/química , Geles/química , Ácido Glicirrínico/química , Saponinas/química , Nanofibras/química , Viscosidad
19.
J Agric Food Chem ; 70(1): 309-318, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958201

RESUMEN

Growing interest is being dedicated to smart soft matters because of their potential in controlling bioactives upon exposure to an appropriate stimulus. Herein, structuring of edible liquid oil into oleogels and emulgels as smart thermo-triggered soft vehicles for controllable release of diverse nutrients was developed. Edible liquid oil was trapped inside the crystal network structure of phytosterols and monoglycerides resulting in bicomponent solidlike oleogels. Subsequently, both water-in-oleogel (W/O) emulgels and glycerol-in-oleogel (G/O) emulgels were further fabricated by spatial distribution of the stabilizing interfacial crystals around dispersed droplets as well as the network crystals in the continuous phase. Rheological measurements showed that the gel strength of the oleogel-based emulgels depends on the fraction of the aqueous phase and is greater than that of corresponding oleogels due to a filler effect of dispersed aqueous droplets within the crystal network, offering an additional strategy to tune the structure and rheology. Comparatively, introducing glycerol endowed a higher gel strength for the oleogel-based emulgels than water, particularly at increased filler loads. In addition, these soft matters exhibited interesting thermoresponsive nature, which exhibit the flexibility for programmed release of coencapsulated bioactive components upon exposure to an appropriate thermal triggered switchable. The resulted smart thermo-triggered soft matters have emerging opportunities for application in functional active ingredient delivery by on-demand strategies.


Asunto(s)
Monoglicéridos , Fitosteroles , Glicerol , Reología , Agua
20.
Food Res Int ; 150(Pt A): 110733, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865752

RESUMEN

Novel supramolecular nanofibrils assembled from food-grade saponin glycyrrhizic acid (GA) are effective building blocks to make complex multiphase systems, e.g., emulsion foams. In this work, the effects of different oil phases (castor oil, sunflower oil, dodecane, and limonene) on the formation, stability and structural properties of long-lived emulsion foams prepared by GA nanofibrils (GNs) were investigated. The obtained results showed that soft-solid emulsion foams (4 wt% GNs) can be fabricated, independently of oil phase, and their structural properties, viscoelasticity, and tribological properties can be well tuned by oil phase polarity. Compared to the GNs aqueous foams, the presence of jammed emulsion droplets in the liquid channels and at the surfaces of bubbles can provide a higher bubble stability for emulsion foams. For more polar oil phase (castor oil), GNs showed a higher affinity to the oil-water interface with a lower interfacial tension, thus forming smaller oil droplets and bubbles, which leads to the higher mechanical strength, denser network microstructures, and lower friction coefficients of emulsion foams. However, the limonene foam exhibited weak storage stability and rheological properties, as well as the relatively low lubrication, which may be related to the formation of oil droplet aggregates and clusters induced by the volatility of limonene. GN-based emulsion foams are thermoresponsive, independently of oils, and the temperature-switchable process for the destabilization and regeneration of foams can be controlled and repeated. These emulsion foams based on natural saponin nanofibrils with tunable properties have potential sustainable applications in foods, pharmaceuticals, and personal care products.


Asunto(s)
Ácido Glicirrínico , Saponinas , Aerosoles , Emulsiones , Aceites
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA