Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(26): 4964-4971, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37342008

RESUMEN

Repairable adhesive elastomers are emerging materials employed in compelling applications such as soft robotics, biosensing, tissue regeneration, and wearable electronics. Facilitating adhesion requires strong interactions, while self-healing requires bond dynamicity. This contrast in desired bond characteristics presents a challenge in the design of healable adhesive elastomers. Furthermore, 3D printability of this novel class of materials has received limited attention, restricting the potential design space of as-built geometries. Here, we report a series of 3D-printable elastomeric materials with self-healing ability and adhesive properties. Repairability is obtained using Thiol-Michael dynamic crosslinkers incorporated into the polymer backbone, while adhesion is facilitated with acrylate monomers. Elastomeric materials with excellent elongation up to 2000%, self-healing stress recovery >95%, and strong adhesion with metallic and polymeric surfaces are demonstrated. Complex functional structures are successfully 3D printed using a commercial digital light processing (DLP) printer. Shape-selective lifting of low surface energy poly(tetrafluoroethylene) objects is achieved using soft robotic actuators with interchangeable 3D-printed adhesive end effectors, wherein tailored contour matching leads to increased adhesion and successful lifting capacity. The demonstrated utility of these adhesive elastomers provides unique capabilities to easily program soft robot functionality.

2.
Angew Chem Int Ed Engl ; 61(50): e202206938, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167937

RESUMEN

Dynamic bonds introduce unique properties such as self-healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine-tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol-Michael exchange, Diels-Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.

3.
ACS Macro Lett ; 11(9): 1156-1161, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36069541

RESUMEN

Photoinduced electron/energy transfer (PET)-reversible addition-fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks. In this study, two different metal catalysts, namely, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) and zinc tetraphenylporphyrin (ZnTPP), were selected to generate two different catalytic pathways, one with Ir(ppy)3 proceeding through an energy-transfer pathway and one with ZnTPP proceeding through an electron-transfer pathway. These PET-RAFT systems were contrasted against a conventional photoinitated RAFT process. Mechanically robust materials were generated. Using bulk swelling ratios and degradable cross-linkers, the homogeneity of the networks was evaluated. Especially at high primary chain length and cross-link density, the PET-RAFT systems generated more uniform networks than those made by conventional RAFT, with the electron transfer-based ZnTPP giving superior results to those of Ir(ppy)3. The ability to deactivate radicals either by RAFT exchange or reversible coupling in PET RAFT was proposed as the mechanism that gave better control in PET-RAFT systems.


Asunto(s)
Iridio , Polímeros , Transferencia de Energía , Metaloporfirinas
4.
ACS Appl Mater Interfaces ; 13(24): 28870-28877, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34124888

RESUMEN

Advances in materials, designs, and controls are propelling the field of soft robotics at an incredible rate; however, current methods for prototyping soft robots remain cumbersome and struggle to incorporate desirable geometric complexity. Herein, a vat photopolymerizable self-healing elastomer system capable of extreme elongations up to 1000% is presented. The material is formed from a combination of thiol/acrylate mixed chain/step-growth polymerizations and uses a combination of physical processes and dynamic-bond exchange via thioethers to achieve full self-healing capacity over multiple damage/healing cycles. These elastomers can be three dimensional (3D) printed with modular designs capable of healing together to form highly complex and large functional soft robots. Additionally, these materials show reprogrammable resting shapes and compatibility with self-healing liquid metal electronics. Using these capabilities, subcomponents with multiple internal channel systems were printed, healed together, and combined with functional liquid metals to form a high-wattage pneumatic switch and a humanoid-scale soft robotic gripper. The combination of 3D printing and self-healing elastomeric materials allows for facile production of support-free parts with extreme complexity, resulting in a paradigm shift for the construction of modular soft robotics.

5.
Macromol Rapid Commun ; 42(18): e2100070, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33960058

RESUMEN

Covalent adaptable networks (CANs) based on the thiol-Michael (TM) linkages can be thermal and pH responsive. Here, a new vinyl-sulfone-based thiol-Michael crosslinker is synthesized and incorporated into acrylate-based CANs to achieve stable materials with dynamic properties. Because of the reversible TM linkages, excellent temperature-responsive re-healing and malleability properties are achieved. In addition, for the first time, a photoresponsive coumarin moiety is incorporated with TM-based CANs to introduce light-mediated reconfigureability and postpolymerization crosslinking. Overall, these materials can be on demand dynamic in response to heat and light but can retain mechanical stability at ambient condition.


Asunto(s)
Calor , Compuestos de Sulfhidrilo , Cumarinas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA