Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Commun Biol ; 7(1): 1006, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152200

RESUMEN

Antibiotic-induced dysbiosis in the fish gut causes significant adverse effects. We use fecal microbiota transplantation (FMT) to accelerate the restoration of florfenicol-perturbed intestinal microbiota in koi carp, identifying key bacterial populations and metabolites involved in the recovery process through microbiome and metabolome analyses. We demonstrate that florfenicol disrupts intestinal microbiota, reducing beneficial genera such as Lactobacillus, Bifidobacterium, Bacteroides, Romboutsia, and Faecalibacterium, and causing mucosal injuries. Key metabolites, including aromatic amino acids and glutathione-related compounds, are diminished. We show that FMT effectively restores microbial populations, repairs intestinal damage, and normalizes critical metabolites, while natural recovery is less effective. Spearman correlation analyses reveal strong associations between the identified bacterial genera and the levels of aromatic amino acids and glutathione-related metabolites. This study underscores the potential of FMT to counteract antibiotic-induced dysbiosis and maintain fish intestinal health. The restored microbiota and normalized metabolites provide a basis for developing personalized probiotic therapies for fish.


Asunto(s)
Antibacterianos , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Tianfenicol , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tianfenicol/análogos & derivados , Tianfenicol/farmacología , Disbiosis/terapia , Disbiosis/microbiología , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Carpas/microbiología , Bacterias/metabolismo , Bacterias/efectos de los fármacos
2.
Research (Wash D C) ; 7: 0401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010883

RESUMEN

Consumption of fried foods is highly prevalent in the Western dietary pattern. Western diet has been unfavorably linked with high risk of developing cardiovascular diseases. Heart failure (HF) as a cardiovascular disease subtype is a growing global pandemic with high morbidity and mortality. However, the causal relationship between long-term fried food consumption and incident HF remains unclear. Our population-based study revealed that frequent fried food consumption is strongly associated with 15% higher risk of HF. The causal relationship may be ascribed to the dietary acrylamide exposure in fried foods. Further cross-sectional study evidenced that acrylamide exposure is associated with an increased risk of HF. Furthermore, we discover and demonstrate that chronic acrylamide exposure may induce HF in zebrafish and mice. Mechanistically, we reveal that acrylamide induces energy metabolism disturbance in heart due to the mitochondria dysfunction and metabolic remodeling. Moreover, acrylamide exposure induces myocardial apoptosis via inhibiting NOTCH1-phosphatidylinositol 3-kinase/AKT signaling. In addition, acrylamide exposure could affect heart development during early life stage, and the adverse effect of acrylamide exposure is a threat for next generation via epigenetic change evoked by DNA methyltransferase 1 (DNMT1). In this study, we reveal the adverse effects and underlying mechanism of fried foods and acrylamide as a typical food processing contaminant on HF from population-based observations to experimental validation. Collectively, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered HF and highlight the significance of reducing fried food consumption for lower the risk of HF.

3.
Environ Pollut ; 358: 124490, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960114

RESUMEN

Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 µg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.


Asunto(s)
Cardiotoxicidad , Embrión no Mamífero , Inflamación , Estrés Oxidativo , Estrobilurinas , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Estrobilurinas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Inflamación/inducido químicamente , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/toxicidad , Pirazoles/toxicidad , Corazón/efectos de los fármacos , Corazón/embriología
4.
Sci Total Environ ; 950: 175134, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39084380

RESUMEN

Acrylamide exposure has become an emerging environmental and food safety issue, and its toxicity poses a potential threat to public health worldwide. However, limited studies have paid attention to the detrimental effects of parental exposure to acrylamide on the neurodevelopment in zebrafish offspring. In this study, the embryos were life-cycle exposed to acrylamide (0.125 and 0.25 mM) for 180 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water from embryos to adults. We employed developmental and morphological observations, behavioral profiles, metabolomics analyses, and transcriptional level examinations to investigate the transgenerational neurotoxicity with parental exposure to acrylamide. Our results showed that parental exposure to acrylamide harms the birth, development, and behavior characterization of the F1 zebrafish larvae, including poor egg quality, increased mortality rates, abnormal heart rates, slowed swimming activity, and heightened anxiety behavior, and continuously disturbs mental health in F1 adult zebrafish. The transcriptional analysis showed that parental chronic exposure to acrylamide deteriorates the neurodevelopment in F1 larvae. In addition, metabolomics analyses revealed that sphingolipid metabolism disruption may be associated with the observed abnormal development and behavioral response in unexposed F1 offspring. Overall, the present study provides pioneer evidence that acrylamide induces transgenerational neurotoxicity via targeting and disrupting sphingolipid metabolism, which reveals intergenerational transmission of acrylamide exposure and unravels its spatiotemporal toxicological effect on neurodevelopment.


Asunto(s)
Acrilamida , Esfingolípidos , Pez Cebra , Animales , Acrilamida/toxicidad , Esfingolípidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Femenino , Exposición Materna/efectos adversos , Exposición Paterna/efectos adversos , Conducta Animal/efectos de los fármacos
5.
ACS Appl Mater Interfaces ; 16(22): 28570-28577, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769608

RESUMEN

Despite being heralded as the "holy grail" of anodes for their high theoretical specific capacity, lithium (Li) metal anodes still face practical challenges due to difficulties in fabricating ultrathin Li with controllable thickness and suppressing Li dendrites growth. Herein, we introduce a simple and cost-effective dip-coating method to fabricate ultrathin lithium-tin (LiSn) anode with adjustable thicknesses ranging from 4.5 to 45 µm. The in situ formation of Li22Sn5 alloy improves the wettability of the molten Li, enabling the casting of ultrathin Li metal layers on different substrates. More importantly, the abundant Li22Sn5 lithiophilic sites significantly lower the nucleation overpotential, inducing uniform Li deposition and accelerating the electrochemical reaction at the interface. As a result, the symmetric cell assembled with LiSn-Cu electrodes can cycle stably for more than 120 h with a charge/discharge depth of 50%, which is 1.5 times longer than the lifespan of the pure Li anode. In the full cells paired with NCM cathode, the discharge specific capacity is improved from 13.84 to 70.31 mA h g-1 with the LiSn-Cu anode at 8 C. The LiSn-Cu||NCM full cell realized a high energy density of 724.9 Wh kg-1 at the active material level with an N/P ratio of 1.4.

6.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260670

RESUMEN

Graphic warning labels (GWLs) on cigarette packs are widely employed to communicate smoking-related health risks. Most GWLs elicit high emotional arousal. Our recent study showed lower efficacy of high-arousal GWLs than low-arousal ones during 4 weeks of naturalistic exposure. Here, we conducted a secondary analysis to investigate the delayed effects of GWLs on smoking severity after the end of the 4- week exposure. In 112 adult smokers (56 high-arousal, 56 low-arousal), there was a significant reduction in the number of cigarettes smoked per day (CPD) from immediately post-exposure to 4 weeks post-exposure. The high-arousal and low-arousal groups did not differ in CPD reduction. Our study suggests lasting impact of GWLs on smoking behavior. The finding may be particularly relevant to the high-arousal GWLs, whose efficacy is not as pronounced during direct and continuous exposure.

7.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 219-226, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015517

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a disease characterized by profound immunosuppression and the prognosis of HNSCC patients remains poor. Necroptosis is a programmed lytic cell-death mechanism that can promote tumor growth, angiogenesis, invasion and metastasis. The differentially expressed NRGs were screened by using the LIMMA package of R software (version 4.1.2) and the prognosis-related NRGs were obtained by COX regression analysis. We separated patients into high- and low-risk groups via the prognostic model consisting of those NRGs. The receiver operating characteristic (ROC) curve and Kaplan-Meier survival curves were used to validate the prognostic model. By bioinformatics analysis, the prognostic risk and immunocompetent models were constructed. We reevaluate the prognostic model based on the GES27020 data sets, clinicopathological variables and chemotherapeutic efficacy. Individuals in the high-risk group had much shorter overall survival (OS) times than their counterparts. Compared with clinicopathological variables, the risk model has a higher diagnostic efficiency, with the area under the ROC being 0.699. Decision Curve Analysis (DCA) showed the prognostic model-based risk score was the superior prognostic factor compared to additional indicators. Furthermore, the high- and low-risk groups had differences in immune cell infiltration and immune functions. And the CCK-8 showed that small molecular drugs could inhibit HNSCC cell proliferation in vitro. We have constructed a new necroptosis-related model, which can be used to predict the prognosis and immunocompetence of HNSCC patients and provide a theoretical basis for the study of necroptosis in the clinical prognosis of HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Necroptosis , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Inmunocompetencia , Apoptosis , Neoplasias de Cabeza y Cuello/genética
8.
Toxins (Basel) ; 15(11)2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999520

RESUMEN

Microbial interactions including competition, mutualism, commensalism, parasitism, and predation, which can be triggered by nutrient acquisition and chemical communication, are universal phenomena in the marine ecosystem. The interactions may influence the microbial population density, metabolism, and even their environmental functions. Herein, we investigated the interaction between a heterotrophic bicosoecid flagellate, Pseudobodo sp. (Bicoecea), and a dinoflagellate, Gambierdiscus balechii (Dinophyceae), which is a well-known ciguatera food poisoning (CFP) culprit. The presence of Pseudobodo sp. inhibited the algal proliferation and decreased the cardiotoxicity of zebrafish in the algal extract exposure experiment. Moreover, a significant difference in microbiome abundance was observed in algal cultures with and without Pseudobodo sp. Chemical analysis targeting toxins was performed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with molecular networking (MN), showing a significant alteration in the cellular production of gambierone analogs and some super-carbon chain compounds. Taken together, our results demonstrated the impact of heterotrophic flagellate on the photosynthetic dinoflagellates, revealing the complex dynamics of algal toxin production and the ecological relationships related to dinoflagellates in the marine environment.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Dinoflagelados/metabolismo , Cromatografía Liquida , Ecosistema , Pez Cebra , Espectrometría de Masas en Tándem , Cromatografía de Gases y Espectrometría de Masas , Ciguatoxinas/toxicidad
9.
Neurobiol Learn Mem ; 205: 107848, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865262

RESUMEN

In the present studies, we assessed the effect of the 5-HT1A receptor (R) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on motor and exploratory behaviors, object and place recognition and dopamine transporter (DAT) and serotonin transporter (SERT) binding in the rat brain. In Experiment I, motor/exploratory behaviors were assessed in an open field after injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle for 30 min without previous habituation to the open field. In Experiment II, rats underwent a 5-min exploration trial in an open field with two identical objects. After injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle, rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Subsequently, N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]FP-CIT; 11 ± 4 MBq) was injected into the tail vein. Regional radioactivity accumulations were determined post mortem with a well counter. In both experiments, 8-OH-DPAT dose-dependently increased ambulation and exploratory head-shoulder motility, whereas rearing was dose-dependently decreased. In the test rial of Experiment II, there were no effects of 8-OH-DPAT on overall activity, sitting and grooming. 8-OH-DPAT dose-dependently impaired recognition of object and place. 8-OH-DPAT (3 mg/kg) increased DAT binding in the dorsal striatum relative to both vehicle and 0.1 mg/kg 8-OH-DPAT. Furthermore, in the ventral striatum, DAT binding was decreased after 3 mg/kg 8-OH-DPAT relative to vehicle. Findings indicate that motor/exploratory behaviors, memory for object and place and regional dopamine function may be modulated by the 5-HT1AR. Since, after 8-OH-DPAT, rats exhibited more horizontal and less (exploratory) vertical motor activity, while overall activity was not different between groups, it may be inferred, that the observed impairment of object recognition was not related to a decrease of motor activity as such, but to a decrease of intrinsic motivation, attention and/or awareness, which are relevant accessories of learning. Furthermore, the present findings on 8-OH-DPAT action indicate associations not only between motor/exploratory behavior and the recognition of object and place but also between the respective parameters and the levels of available DA in dorsal and ventral striatum.


Asunto(s)
Receptor de Serotonina 5-HT1A , Estriado Ventral , Ratas , Animales , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Agonistas de Receptores de Serotonina/farmacología
10.
RSC Adv ; 13(43): 30453-30461, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37854485

RESUMEN

Infectious wounds pose significant challenges due to their susceptibility to bacterial infections, hindering tissue repair. This study introduces gradient gelatin nanocomposite hydrogels for wound healing and antibacterial biofilm management. These hydrogels, synthesized via UV light polymerization, incorporate copper-doped polydopamine nanoparticles (PDA-Cu) and GelMA (gelatin methacrylate). The hydrogels have a unique structure with a porous upper layer and a denser lower layer, ensuring superior swelling (over than 600%) and effective contact with bacterial biofilms. In vitro experiments demonstrate their remarkable antibacterial properties, inhibiting S. aureus and E. coli biofilms by over 45% and 53%, respectively. This antibacterial action is attributed to the regulation of reactive oxygen species (ROS) production, an alternative mechanism to bacterial cell wall disruption. Moreover, the hydrogels exhibit high biocompatibility with mammalian cells, making them suitable for medical applications. In vivo evaluation in a rat wound infection model shows that the gradient hydrogel treatment effectively controls bacterial biofilm infections and accelerates wound healing. The treated wounds have smaller infected areas and reduced bacterial colony counts. Histological analysis reveals reduced inflammation and enhanced granulation tissue formation in treated wounds, highlighting the therapeutic potential of these gradient nanocomposite hydrogels. In summary, gradient gelatin nanocomposite hydrogels offer promising multifunctional capabilities for wound healing and biofilm-related infections, paving the way for innovative medical dressings with enhanced antibacterial properties and biocompatibility.

11.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666313

RESUMEN

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Hepatopáncreas/metabolismo , Ecdisona/análisis , Ecdisona/metabolismo , Ecdisona/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Penaeidae/fisiología , Tirosina/metabolismo
12.
Pestic Biochem Physiol ; 194: 105526, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532338

RESUMEN

Methidathion is a highly effective organophosphorus pesticide and is extensively utilized for the control of insects in agricultural production. However, there is little information on the adverse effects and underlying mechanisms of methidathion on aquatic organisms. In this work, embryonic zebrafish were exposed to methidathion at concentrations of 4, 10, and 25 mg/L for 96 h, and morphological changes and activities of antioxidant indicators alterations were detected. In addition, the locomotor behavioral abilities of zebrafish exposed to methidathion were also measured. To further explore the mechanism of the toxic effects of methidathion, gene expression levels associated with cardiac development, cell apoptosis, and the immune system were tested through qPCR assays. The findings revealed that methidathion exposure could induce a decrease in survival rate, hatchability, length of body, and increase in abnormality of zebrafish, as well as cardiac developmental toxicity. The LC50 value of methidathion in zebrafish embryos was determined to be about 30.72 mg/L at 96 hpf. Additionally, methidathion exposure triggered oxidative stress in zebrafish by increasing SOD activity, ROS, and MDA content. Acridine orange (AO) staining indicated that methidathion exposure led to apoptosis, which was mainly distributed in the pericardial region. Furthermore, significant impairments of locomotor activity in zebrafish larvae were induced by methidathion exposure. Lastly, the expression of pro-inflammatory factors including IFN-γ, IL-6, IL-8, CXCL-clc, TLR4, and MYD88 significantly up-regulated in exposed zebrafish. Taken together, the results in this work illustrated that methidathion caused developmental toxicity, cardiotoxicity, and immunotoxicity in embryogenetic zebrafish.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Pez Cebra , Cardiotoxicidad/metabolismo , Compuestos Organofosforados/metabolismo , Plaguicidas/farmacología , Estrés Oxidativo , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
13.
BMC Public Health ; 23(1): 1338, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438808

RESUMEN

BACKGROUND: The prevalence of type 2 diabetes mellitus (T2DM) currently was increased in some countries of the world like China. However, the epidemiological trends of T2DM attributable to non-high body mass index (BMI) remain unclear. Thus, we aimed to describe the burden of T2DM attributable to non-high BMI. METHODS: To estimate the burden of T2DM attributable to non-high BMI, data from the Global Burden of Disease Study 2019 were used to calculate the deaths and disability-adjusted life years (DALYs) by age, sex, year, and location. The estimated annual percentage change (EAPC) was applied in the analysis of temporal trends in T2DM from 1990 to 2019. RESULTS: Globally in 2019, the number of death cases and DALYs of T2DM attributable to non-high BMI accounted for 57.9% and 48.1% of T2DM-death from all risks, respectively. Asia accounted for 59.5% and 63.6% of the global non-high-BMI-related death cases and DALYs of T2DM in 2019, respectively. From 1990 to 2019, regions in the low-income experienced a rise in DALYs attributable to non-high BMI. As compared to other age groups, older participants had higher deaths and DALYs of T2DM attributable to non-high BMI. The death and DALY rates of T2DM due to non-high BMI were higher in males and people in regions with low socio-demographic index (SDI) countries. CONCLUSIONS: The burden of T2DM attributable to non-high BMI is higher in the elderly and in people in regions with low- and middle-SDI, resulting in a substantial burden on human health and the social cost of healthcare.


Asunto(s)
Diabetes Mellitus Tipo 2 , Anciano , Masculino , Humanos , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/epidemiología , Percepción Social , Asia , China/epidemiología
14.
Food Chem Toxicol ; 177: 113860, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37263572

RESUMEN

Hyoscyamine is a kind of tropane alkaloids, which exists in several plants of the family Solanaceae. However, the mechanism underlying such hyoscyamine toxic effects during early development remains unclear. In this study, an untargeted metabolomics approach was used to investigate the toxic mechanisms of hyoscyamine in zebrafish embryos. The LC10 and MNLC of hyoscyamine in zebrafish embryos were determined to be 350 and 313 µg/mL, respectively. Moreover, hyoscyamine exposure increased the accumulation of ROS and MDA, and altered the activity of antioxidant enzymes (CAT, SOD, and GSH) in zebrafish embryos. After exposure, the embryos were extracted, derivatized and analyzed by UHPLC-Q-Orbitrap-HRMS for 3551 metabolites to identify 38 significantly changed metabolites based on the VIP, p value, and fold change results. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 5.0 as follows: pyrimidine metabolism, purine metabolism, histidine metabolism, beta-Alanine metabolism, and glutathione metabolism. These results suggested that hyoscyamine exposure to zebrafish embryos exhibited marked metabolic disturbance. Such significant perturbations of important metabolites within crucial biochemical pathways may have biologically hazardous effects on zebrafish embryos induced by hyoscyamine.


Asunto(s)
Hiosciamina , Contaminantes Químicos del Agua , Animales , Pez Cebra , Antioxidantes/farmacología , Estrés Oxidativo , Metabolómica , Embrión no Mamífero , Contaminantes Químicos del Agua/metabolismo
15.
Front Neurosci ; 17: 1163575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090801

RESUMEN

Background: Fetal alcohol spectrum disorders (FASD) caused by prenatal ethanol exposure (PE) consist of many cognitive/behavioral deficits. Studies have reported that PE leads to impairments of learning and memory, attention, executive function, and anxiety. Open field (OF) is a common behavioral model which offers comprehensive ethological information. Here, we analyzed multiple parameters of OF to examine anxiety behavior and habituation after PE. Material and Methods: Pregnant Sprague Dawley rats were gavaged twice/day with 0 or 3 g/kg/treatment ethanol (15% w/v) during gestational day (GD) 8-20, mimicking second-trimester heavy PE in humans. The control and PE adult offspring were subjected to OF task in different ambient light levels with or without acute stress. Results: Prenatal ethanol exposure did not influence the overall locomotor activities or habituation in the OF. In lower ambient light, no PE effects could be detected. In higher ambient light, female PE rats showed less activities in the center zone, indicative of increased anxiety. Males show lower activities in the center zone only after acute stress. Rats spent <2% of the time in the center zone compared to >75% of the time in the corner zone where they engaged in frequent rearing activities (vertical exploration; exploratory rearing). Prenatal ethanol exposure led to lower rearing activities in the corner in both males and females. Acute stress masks the PE effects in males but not in females. Discussion: The results support that heavy PE leads to persistent anxiety-like behavior during adulthood in both sexes. This conclusion is supported by using multiple parameters of exploratory behavior in the OF, including the rearing activities in the corner to reach reliable quantification of anxiety-like behavior.

16.
Proc Natl Acad Sci U S A ; 120(18): e2221097120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094155

RESUMEN

Western dietary patterns have been unfavorably linked with mental health. However, the long-term effects of habitual fried food consumption on anxiety and depression and underlying mechanisms remain unclear. Our population-based study with 140,728 people revealed that frequent fried food consumption, especially fried potato consumption, is strongly associated with 12% and 7% higher risk of anxiety and depression, respectively. The associations were more pronounced among male and younger consumers. Consistently, long-term exposure to acrylamide, a representative food processing contaminant in fried products, exacerbates scototaxis and thigmotaxis, and further impairs exploration ability and sociality of adult zebrafish, showing anxiety- and depressive-like behaviors. Moreover, treatment with acrylamide significantly down-regulates the gene expression of tjp2a related to the permeability of blood-brain barrier. Multiomics analysis showed that chronic exposure to acrylamide induces cerebral lipid metabolism disturbance and neuroinflammation. PPAR signaling pathway mediates acrylamide-induced lipid metabolism disorder in the brain of zebrafish. Especially, chronic exposure to acrylamide dysregulates sphingolipid and phospholipid metabolism, which plays important roles in the development of anxiety and depression symptoms. In addition, acrylamide promotes lipid peroxidation and oxidation stress, which participate in cerebral neuroinflammation. Acrylamide dramatically increases the markers of lipid peroxidation, including (±)5-HETE, 11(S)-HETE, 5-oxoETE, and up-regulates the expression of proinflammatory lipid mediators such as (±)12-HETE and 14(S)-HDHA, indicating elevated cerebral inflammatory status after chronic exposure to acrylamide. Together, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered anxiety and depression, and highlight the significance of reducing fried food consumption for mental health.


Asunto(s)
Metabolismo de los Lípidos , Pez Cebra , Masculino , Animales , Depresión , Enfermedades Neuroinflamatorias , Acrilamida , Ansiedad , Contaminación de Alimentos/análisis
17.
Food Chem Toxicol ; 176: 113776, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059383

RESUMEN

Chlorprenaline hydrochloride (CLOR) is a typical representative of ß-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.


Asunto(s)
Acetilcolinesterasa , Pez Cebra , Animales , Larva/metabolismo , Acetilcolinesterasa/metabolismo , Isoproterenol/metabolismo
18.
Ecotoxicol Environ Saf ; 254: 114723, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871354

RESUMEN

Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Desarrollo Embrionario , Embrión no Mamífero , Contaminantes Químicos del Agua/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo
19.
Toxics ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36668810

RESUMEN

Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.

20.
Birth Defects Res ; 115(3): 318-326, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326103

RESUMEN

OBJECTIVES: The present study mainly focused on the assessment of developmental toxicity induced by exposure to brodifacoum (BDF) in zebrafish at early life stages. MATERIAL AND METHODS: Zebrafish embryos were exposed to 0.2, 0.4, and 0.8 mg/L of BDF from 6 to 96 hr post-fertilization (hpf), and the toxic effects of BDF on early embryonic development were investigated in terms of morphological changes, oxidative stress, and alterations in heart development-related genes. RESULTS: The experimental results showed that BDF significantly decreased the heart rate, survival rate, body length, and spontaneous movements of zebrafish embryos at 0.8 mg/L, and the morphological developmental abnormalities were also observed at 96 hpf. In addition, exposure to BDF significantly increased oxidative stress levels in zebrafish embryos by increasing the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels, and decreased glutathione (GSH) levels. Furthermore, BDF treatment-induced alterations in the expression levels of the heart development-related genes (gata4, sox9b, tbx2b, and nppa). CONCLUSION: Results from this study indicated that exposure to BDF could lead to marked growth inhibition and significantly alter the activities of antioxidant enzymes in zebrafish embryos. Moreover, BDF exposure exhibited severe cardiotoxicity and significantly disrupted heart development-related genes. The results indicated that BDF could induce developmental and cardiac toxicity in zebrafish embryos.


Asunto(s)
Embrión no Mamífero , Pez Cebra , Animales , Estrés Oxidativo , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA