Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1186258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283767

RESUMEN

Introduction: Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods: To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results: A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion: This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.


Asunto(s)
Tonsila Faríngea , Apnea Obstructiva del Sueño , Niño , Humanos , Subgrupos Linfocitarios/patología , Recuento de Linfocitos , Hipertrofia
2.
Front Neurosci ; 17: 1170889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274192

RESUMEN

Introduction: Obstructive sleep apnea (OSA) has been associated with psychiatric disorders, especially depression and posttraumatic stress disorder (PTSD). FKBP5 genetic variants have been previously reported to confer the risk of depression and PTSD. This study aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the FKBP5 gene with OSA and OSA-related quantitative traits. Methods: Four SNPs within the FKBP5 gene (rs1360780, rs3800373, rs9296158, rs9470080) were genotyped in 5773 participants with anthropometric and polysomnography data. Linear regression and logistic regression analyses were performed to evaluate the relationship between FKBP5 SNPs and OSA-related traits. Binary logistic regression was used to assess the effect of SNPs on OSA susceptibility. Interacting genes of SNPs were assessed based on the 3DSNP database, and expression quantitative trait loci (eQTL) analysis for SNPs was adopted to examine the correlation of SNPs with gene expression. Gene expression analyses in human brains were performed with the aid of Brain Atlas. Results: In moderate-to-severe OSA patients, all four SNPs were positively associated with AHIREM, and rs9296158 showed the strongest association (ß = 1.724, p = 0.001). Further stratified analyses showed that in men with moderate OSA, rs1360780, rs3800373 and rs9470080 were positively associated with wake time (p = 0.0267, p = 0.0254 and p = 0.0043, respectively). Rs1360780 and rs3800373 were 28 and 29.4%more likely to rate a higher ordered MAI category (OR (95% CI) = 1.280 (1.042 - 1.575), p = 0.019; OR (95% CI) = 1.294 (1.052 - 1.592), p = 0.015, respectively). Rs9296158 and rs9470080 increased the risk of low sleep efficiency by 25.7 and 28.1% (OR (95% CI) = 1.257 (1.003 - 1.575), p = 0.047; OR (95% CI) = 1.281 (1.026-1.6), p = 0.029, respectively). Integrated analysis of eQTL and gene expression patterns revealed that four SNPs may exert their effects by regulating FKBP5, TULP1, and ARMC12. Conclusion: Single nucleotide polymorphisms in the FKBP5 gene were associated with sleep respiratory events in moderate-to-severe OSA patients during REM sleep and associated with sleep architecture variables in men with moderate OSA. FKBP5 variants may be a potential predisposing factor for sleep disorders, especially in REM sleep.

3.
ACS Omega ; 7(14): 11839-11852, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449961

RESUMEN

Ubiquitination is a major posttranslational modification of proteins that affects their stability, and E3 ligases play a key role in ubiquitination by specifically recognizing their substrates. BTBD9, an adaptor of the Cullin-RING ligase complex, is responsible for substrate recognition and is associated with sleep homeostasis. However, the substrates of BTBD9-mediated ubiquitination remain unknown. Here, we generated an SH-SY5Y cell line stably expressing BTBD9 and performed proteomic analysis combined with ubiquitinome analysis to identify the downstream targets of BTBD9. Through this approach, we identified four potential BTBD9-mediated ubiquitination substrates that are targeted for degradation. Among these candidate substrates, inosine monophosphate dehydrogenase (IMPDH2), a novel target of BTBD9-mediated degradation, is a potential risk gene for sleep dysregulation. In conclusion, these findings not only demonstrate that proteomic analysis can be a useful general approach for the systematic identification of E3 ligase substrates but also identify novel substrates of BTBD9, providing a resource for future studies of sleep regulation mechanisms.

4.
Front Endocrinol (Lausanne) ; 12: 761547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046891

RESUMEN

Objective: Roux-en-Y gastric bypass (RYGB) surgery is an effective type of weight loss management and may improve obesity-related obstructive sleep apnea (OSA). Obese subjects who meet the criteria for surgery with OSA were enrolled. We investigated the metabolomic effects of RYGB on OSA. Methods: Clinical data, serum measurements including indices of glycolipid metabolism, and polysomnography (PSG) measurements were collected at baseline and 6 months after RYGB surgery. Metabolomic analysis was performed using ultra-performance liquid chromatography-mass spectrometry. Results: A group of 37 patients with obesity, type 2 diabetes (T2DM) and suspected OSA were enrolled of which 27 were OSA subjects. After RYGB surgery, metabolic outcomes and sleep parameters were all significantly improved. The OSA remission group had lower valine, isoleucine, and C24:1(cis-15) levels, and higher trimethylamine N-oxide, hippurate, and indole-3-propionic acid levels after RYGB surgery. A combination of preoperative indices (age, apnea-hypopnea index (AHI), fasting C-peptide level, and hippurate level) predicted the RYGB effect size in obese patients with T2DM and OSA, with an area under receiver operating characteristic curve of 0.947, specificity of 82.4%, and sensitivity of 100%. Conclusions: RYGB surgery may significantly improve the metabolic status of patients with obesity, T2DM and OSA. A combination of preoperative indices (age, AHI, fasting C peptide level, and hippurate level) may be useful for predicting the effect size of RYGB in obese patients with T2DM and OSA. The mechanisms underlying OSA remission need to be explored.


Asunto(s)
Derivación Gástrica , Obesidad/cirugía , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/metabolismo , Programas de Reducción de Peso , Adulto , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Obesidad/complicaciones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...