Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7991): 366-377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092913

RESUMEN

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Asunto(s)
Encéfalo , Metilación de ADN , Epigenoma , Multiómica , Análisis de la Célula Individual , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Datos como Asunto , Factores de Transcripción/metabolismo , Transcripción Genética
2.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131654

RESUMEN

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

3.
Cell Genom ; 2(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35419551

RESUMEN

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

4.
Nature ; 569(7757): 581-585, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043749

RESUMEN

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas Algáceas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálisis , Chlamydomonas reinhardtii/enzimología , ADN/química , ADN/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilación de ADN , Glioxilatos/metabolismo , Nucleósidos/química , Nucleósidos/metabolismo , Fotosíntesis
5.
Elife ; 72018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30325306

RESUMEN

TET enzymes convert 5-methylcytosine to 5-hydroxymethylcytosine and higher oxidized derivatives. TETs stably associate with and are post-translationally modified by the nutrient-sensing enzyme OGT, suggesting a connection between metabolism and the epigenome. Here, we show for the first time that modification by OGT enhances TET1 activity in vitro. We identify a TET1 domain that is necessary and sufficient for binding to OGT and report a point mutation that disrupts the TET1-OGT interaction. We show that this interaction is necessary for TET1 to rescue hematopoetic stem cell production in tet mutant zebrafish embryos, suggesting that OGT promotes TET1's function during development. Finally, we show that disrupting the TET1-OGT interaction in mouse embryonic stem cells changes the abundance of TET2 and 5-methylcytosine, which is accompanied by alterations in gene expression. These results link metabolism and epigenetic control, which may be relevant to the developmental and disease processes regulated by these two enzymes.


Asunto(s)
Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Células Madre Embrionarias de Ratones/metabolismo , N-Acetilglucosaminiltransferasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Pez Cebra/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Metilación de ADN/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Ratones , Mutación , Unión Proteica/genética , Dominios Proteicos/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
Cell Res ; 27(7): 933-945, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28585534

RESUMEN

The CRISPR/Cas9 system is an efficient gene-editing method, but the majority of gene-edited animals showed mosaicism, with editing occurring only in a portion of cells. Here we show that single gene or multiple genes can be completely knocked out in mouse and monkey embryos by zygotic injection of Cas9 mRNA and multiple adjacent single-guide RNAs (spaced 10-200 bp apart) that target only a single key exon of each gene. Phenotypic analysis of F0 mice following targeted deletion of eight genes on the Y chromosome individually demonstrated the robustness of this approach in generating knockout mice. Importantly, this approach delivers complete gene knockout at high efficiencies (100% on Arntl and 91% on Prrt2) in monkey embryos. Finally, we could generate a complete Prrt2 knockout monkey in a single step, demonstrating the usefulness of this approach in rapidly establishing gene-edited monkey models.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , Haplorrinos/genética , ARN Guía de Kinetoplastida/genética , Factores de Transcripción ARNTL/genética , Animales , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Embrión de Mamíferos/citología , Endonucleasas , Exones/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mosaicismo/embriología , Recuperación del Oocito , Fenotipo , ARN Mensajero/genética , Secuenciación Completa del Genoma , Cromosoma Y , Cigoto/citología
7.
Nature ; 538(7626): 528-532, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27760115

RESUMEN

Mammalian genomes undergo epigenetic modifications, including cytosine methylation by DNA methyltransferases (DNMTs). Oxidation of 5-methylcytosine by the Ten-eleven translocation (TET) family of dioxygenases can lead to demethylation. Although cytosine methylation has key roles in several processes such as genomic imprinting and X-chromosome inactivation, the functional significance of cytosine methylation and demethylation in mouse embryogenesis remains to be fully determined. Here we show that inactivation of all three Tet genes in mice leads to gastrulation phenotypes, including primitive streak patterning defects in association with impaired maturation of axial mesoderm and failed specification of paraxial mesoderm, mimicking phenotypes in embryos with gain-of-function Nodal signalling. Introduction of a single mutant allele of Nodal in the Tet mutant background partially restored patterning, suggesting that hyperactive Nodal signalling contributes to the gastrulation failure of Tet mutants. Increased Nodal signalling is probably due to diminished expression of the Lefty1 and Lefty2 genes, which encode inhibitors of Nodal signalling. Moreover, reduction in Lefty gene expression is linked to elevated DNA methylation, as both Lefty-Nodal signalling and normal morphogenesis are largely restored in Tet-deficient embryos when the Dnmt3a and Dnmt3b genes are disrupted. Additionally, a point mutation in Tet that specifically abolishes the dioxygenase activity causes similar morphological and molecular abnormalities as the null mutation. Taken together, our results show that TET-mediated oxidation of 5-methylcytosine modulates Lefty-Nodal signalling by promoting demethylation in opposition to methylation by DNMT3A and DNMT3B. These findings reveal a fundamental epigenetic mechanism featuring dynamic DNA methylation and demethylation crucial to regulation of key signalling pathways in early body plan formation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Gastrulación , Factores de Determinación Derecha-Izquierda/metabolismo , Proteína Nodal/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , 5-Metilcitosina/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Dioxigenasas/deficiencia , Dioxigenasas/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Femenino , Gastrulación/genética , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Oxidación-Reducción , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , ADN Metiltransferasa 3B
8.
Sheng Li Xue Bao ; 67(6): 583-90, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26701633

RESUMEN

The present study was designed to investigate the inhibitory effects of intravenous general anesthetic propofol (0.1-3.0 mmol/L) on excitatory synaptic transmission in supraoptic nucleus (SON) neurons of rats, and to explore the underlying mechanisms by using intracellular recording technique and hypothalamic slice preparation. It was observed that stimulation of the dorsolateral region of SON could elicit the postsynaptic potentials (PSPs) in SON neurons. Of the 8 tested SON neurons, the PSPs of 7 (88%, 7/8) neurons were decreased by propofol in a concentration-dependent manner, in terms of the PSPs' amplitude (P < 0.01), area under curve, duration, half-width and 10%-90% decay time (P < 0.05). The PSPs were completely and reversibly abolished by 1.0 mmol/L propofol at 2 out of 7 tested cells. The depolarization responses induced by pressure ejection of exogenous glutamate were reversibly and concentration-dependently decreased by bath application of propofol. The PSPs and glutamate-induced responses recorded simultaneously were reversibly and concentration-dependently decreased by propofol, but 0.3 mmol/L propofol only abolished PSPs. The excitatory postsynaptic potentials (EPSPs) of 7 cells increased in the condition of picrotoxin (30 µmol/L, a GABA(A) receptor antagonist) pretreatment. On this basis, the inhibitory effects of propofol on EPSPs were decreased. These data indicate that the presynaptic and postsynaptic mechanisms may be both involved in the inhibitory effects of propofol on excitatory synaptic transmission in SON neurons. The inhibitory effects of propofol on excitatory synaptic transmission of SON neurons may be related to the activation of GABA(A) receptors, but at a high concentration, propofol may also act directly on glutamate receptors.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/farmacología , Núcleo Supraóptico/citología , Anestésicos Intravenosos/farmacología , Animales , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/farmacología , Técnicas In Vitro , Ratas , Receptores de Glutamato/metabolismo
9.
Mol Cell ; 56(2): 286-297, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25263596

RESUMEN

In mammals, cytosine methylation (5mC) is widely distributed throughout the genome but is notably depleted from active promoters and enhancers. While the role of DNA methylation in promoter silencing has been well documented, the function of this epigenetic mark at enhancers remains unclear. Recent experiments have demonstrated that enhancers are enriched for 5-hydroxymethylcytosine (5hmC), an oxidization product of the Tet family of 5mC dioxygenases and an intermediate of DNA demethylation. These results support the involvement of Tet proteins in the regulation of dynamic DNA methylation at enhancers. By mapping DNA methylation and hydroxymethylation at base resolution, we find that deletion of Tet2 causes extensive loss of 5hmC at enhancers, accompanied by enhancer hypermethylation, reduction of enhancer activity, and delayed gene induction in the early steps of differentiation. Our results reveal that DNA demethylation modulates enhancer activity, and its disruption influences the timing of transcriptome reprogramming during cellular differentiation.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/metabolismo , Animales , Secuencia de Bases , Línea Celular , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas , Ratones , Ratones Noqueados , Oxidación-Reducción , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Análisis de Secuencia de ADN , Transcriptoma/genética , Dedos de Zinc/genética
10.
Sheng Li Xue Bao ; 66(2): 129-34, 2014 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-24777402

RESUMEN

The aim of the present study is to observe the receptor kinetics property of long-term potentiation (LTP) of excitatory postsynaptic potential (EPSP) in spinal cord motoneurons (MNs) by descending activation. The intracellular recording techniques were conducted in spinal cord MNs of neonatal rats aged 8-14 days. The changes of EPSP induced by ipsilateral ventrolateral funiculus (iVLF) stimulation (iVLF-EPSPs) were observed, and receptor kinetics of iVLF-EPSPs were analyzed. The results showed that, the amplitude, area under curve and maximum left slope of EPSP were positively correlated with stimulus intensity (P < 0.05 or P < 0.01), while the apparent receptor kinetic parameters apparent dissociation rate constant (K(2)), apparent equilibrium dissociation constant (K(T)) of EPSP were negatively correlated with stimulus intensity (P < 0.01 or P < 0.05). The iVLF-EPSPs were persistently increased after tetanic stimulation (100 Hz, 50 pulses/train, duration 0.4-1.0 ms, 6 trains, main interval 10 s, 10-100 V) in 5 of 11 tested MNs. The amplitude of iVLF-EPSPs was potentiated to more than 120% of baseline and lasted at least 30 min, which could be referred to as iVLF-LTP. Meanwhile, the area under curve and maximum left slope of EPSPs were also increased to more than 120% of baseline. During iVLF-LTP, apparent receptor kinetics analyses of iVLF-EPSPs indicated that K(2) and KT were decreased significantly to less than 80% of the baseline within 10 min and gradually and partially recovered in 3 MNs. These results of receptor kinetics analyses of iVLF-EPSPs suggest a possible enhancement in affinity of postsynaptic receptors in the early stage of iVLF-LTP in some MNs.


Asunto(s)
Potenciales Postsinápticos Excitadores , Potenciación a Largo Plazo , Neuronas Motoras/fisiología , Animales , Cinética , Ratas , Médula Espinal/citología , Transmisión Sináptica
12.
Cell ; 149(3): 605-17, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541431

RESUMEN

Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.


Asunto(s)
Células Madre Embrionarias/citología , Técnicas Genéticas , Ratones Transgénicos , Animales , Blastocisto/citología , Núcleo Celular/metabolismo , Femenino , Marcación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo
13.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 16(1): 29-32, 2004 Jan.
Artículo en Chino | MEDLINE | ID: mdl-14706200

RESUMEN

OBJECTIVE: To investigate the mechanism of myocardial ischemia/reperfusion injury and the protective effect of fructose-1, 6-diphosphagic (FDP) and dexamethasone (DXM) in hemorrhagic shock in rabbits. METHODS: Using a hemorrhagic shock model of Wiggers, 48 rabbits were randomly divided into 6 groups. Group I control group; GroupII with drugs given before ischemia phase (divided into 3 groups: FDP I, DXM I and FDP I+ DXM I); Group III with drugs given in reperfusion phase (divided into 2 groups: FDPII and DXMII). The levels of creatine kinase (CK) and troponin I (cTnI) in plasma were measured, and myocyte apoptosis index was assessed. RESULTS: Baseline levels of CK and cTnI were similar in three groups; CK and cTnI and apoptosis index were lower or with a lower tendency in groupII and in groupIII (P<0.05 or P<0.01); CK and cTnI showed a lower tendency in rise in FDP I and DXM I than in FDPII and even slower in FDP group than in DXM group; CK and cTnI levels rose slower in FDP I+DXM I than in FDP I and DXM I. CONCLUSION: FDP given during ischemia and DXM could effectively protect the myocardium from reperfusion injury following hemorrhagic shock.


Asunto(s)
Dexametasona/uso terapéutico , Fructosadifosfatos/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Choque Hemorrágico/complicaciones , Animales , Fármacos Cardiovasculares/uso terapéutico , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Glucocorticoides/uso terapéutico , Corazón/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/etiología , Miocardio/patología , Conejos , Distribución Aleatoria , Troponina I/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...