Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Appl Thromb Hemost ; 28: 10760296211073925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35043708

RESUMEN

Pulmonary embolism (PE) is a common and potentially lethal form of venous thromboembolic disease in ICU patients. A limited number of risk factors have been associated with PE in ICU patients. In this study, we aimed to screen the independent risk factors of PE in ICU patients that can be used to evaluate the patient's condition and provide targeted treatment. We performed a retrospective cohort study using a freely accessible critical care database Medical Information Mart for Intensive Care (MIMIC)-III. The ICU patients were divided into two groups based on the incidence of PE. Finally, 9871 ICU patients were included, among which 204 patients (2.1%) had pulmonary embolism. During the multivariate logistic regression analysis, sepsis, hospital_LOS (the length of stay in hospital), type of admission, tumor, APTT (activated partial thromboplastin time) and platelet were independent risk factors for patients for PE in ICU, with OR values of 1.471 (95%CI 1.001-2.162), 1.001 (95%CI 1.001-1.001), 3.745 (95%CI 2.187-6.414), 1.709 (95%CI 1.247-2.341), 1.014 (95%CI 1.010-1.017) and 1.002 (95%CI 1.001-1.003) (Ps < 0.05). ROC curve analysis showed that the composite indicator had a higher predictive value for ICU patients with PE, with a ROC area under the curve (AUC) of 0.743 (95%CI 0.710 -0.776, p < 0.001). Finally, sepsis, tumor, platelet count, length of stay in the hospital, emergency admission and APTT were independent predictors of PE in ICU patients.


Asunto(s)
Unidades de Cuidados Intensivos/estadística & datos numéricos , Embolia Pulmonar/epidemiología , Anciano , China/epidemiología , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo
2.
Free Radic Biol Med ; 176: 228-240, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34260898

RESUMEN

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serious complication after long-term or excess administration of clinical glucocorticoids intervention, and the pathogenic mechanisms underlying have not been clarified yet. Oxidative stress is considered as a major cause of bone homeostasis disorder. This study is aimed to explore the potential relevance between SIRT3 and GIONFH, as well as the effect of resveratrol, which has been reported for its role in SIRT3 activation, on dexamethasone-induced oxidative stress and mitochondrial compromise in bone marrow stem cells (BMSCs). In this study, our data showed that SIRT3 level was declined in GIONFH rat femoral head, corresponding to a resultant decrease of SIRT3 expression in dexamethasone-treated BMSCs in vitro. We also found that dexamethasone could result in oxidative injury in BMSCs, and resveratrol treatment reduced this deleterious effect via a SIRT3-dependent manner. Moreover, our results demonstrated that rewarding effect of resveratrol on BMSCs osteogenic differentiation was via activation of AMPK/PGC-1α/SIRT3 axis. Meanwhile, resveratrol administration prevented the occurrence of GIONFH, enhanced SIRT3 expression and reduced oxidative level in GIONFH model rats. Therefore, our study provides basic evidence that SIRT3 may be a promising therapeutic target for GIONFH treatment and resveratrol could be an ideal agent for clinical uses.


Asunto(s)
Osteonecrosis , Sirtuina 3 , Animales , Cabeza Femoral/metabolismo , Glucocorticoides/toxicidad , Osteogénesis , Osteonecrosis/metabolismo , Estrés Oxidativo , Ratas , Sirtuina 3/genética , Sirtuina 3/metabolismo
3.
Free Radic Biol Med ; 163: 356-368, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385540

RESUMEN

Osteoporosis is characterized by impaired bone metabolism. Current estimates show that it affects millions of people worldwide and causes a serious socioeconomic burden. Mitophagy plays key roles in bone marrow mesenchymal stem cells (BMSCs) osteoblastic differentiation, mineralization, and survival. Apelin is an endogenous adipokine that participates in bone homeostasis. This study was performed to determine the role of Apelin in the osteoporosis process and whether it affects mitophagy, survival, and osteogenic capacity of BMSCs in in vitro and in vivo models of osteoporosis. Our results demonstrated that Apelin was down-regulated in ovariectomized-induced osteoporosis rats and Apelin-13 treatment activated mitophagy in BMSCs, ameliorating oxidative stress and thereby reviving osteogenic function via AMPK-α phosphorylation. Besides, Apelin-13 administration restored bone mass and microstructure as well as reinstated mitophagy, enhanced osteogenic function in OVX rats. Collectively, our findings reveal the intrinsic mechanisms underlying Apelin-13 regulation in BMSCs and its potential therapeutic values in the treatment of osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Proteínas Quinasas Activadas por AMP , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular , Mitofagia , Osteogénesis , Osteoporosis/tratamiento farmacológico , Estrés Oxidativo , Ratas , Transducción de Señal
4.
Oxid Med Cell Longev ; 2020: 9102012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062149

RESUMEN

The widespread use of therapeutic glucocorticoids has increased the frequency of glucocorticoid-induced osteoporosis (GIOP). One of the potential pathological processes of GIOP is an increased level of oxidative stress and mitochondrial dysfunction, which eventually leads to osteoblast apoptosis. Proanthocyanidins (PAC) are plant-derived antioxidants that have therapeutic potential against GIOP. In our study, a low dose of PAC was nontoxic to healthy osteoblasts and restored osteogenic function in dexamethasone- (Dex-) treated osteoblasts by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis. Mechanistically, PAC neutralized Dex-induced damage in the osteoblasts by activating the Nrf2 pathway, since silencing Nrf2 partly eliminated the protective effects of PAC. Furthermore, PAC injection restored bone mass and promoted the expression of Nrf2 in the distal femur of Dex-treated osteoporotic rats. In summary, PAC protect osteoblasts against Dex-induced oxidative stress and mitochondrial dysfunction via the Nrf2 pathway activation and may be a promising drug for treating GIOP.


Asunto(s)
Glucocorticoides/farmacología , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proantocianidinas/farmacología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dexametasona/farmacología , Mitocondrias/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
5.
Front Pharmacol ; 11: 1209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848799

RESUMEN

Chronic long-term glucocorticoids (GC) use is associated with glucocorticoid-induced osteoporosis (GIOP) by inhibiting the survival and impairing the functions of osteoblasts. Autophagy and mitophagy play key roles in osteoblast differentiation, mineralization and survival, and mounting evidence have implicated osteoblast autophagy and mitophagy as a novel mechanism in the pathogenesis of GIOP. Vitamin K2 (VK2) is an essential nutrient supplement that have been shown to exert protective effects against osteoporotic bone loss including GIOP. In this study, we showed that the glucocorticoid dexamethasone (Dex) deregulated osteoblast autophagy and mitophagy by downregulating the expression of autophagic and mitophagic markers LC3-II, PINK1, Parkin. This consequently led to inhibition of osteoblast differentiation and mineralization function in vitro. Interestingly, co-treatment with VK2 significantly attenuated the Dex-induced downregulation of LC3-II, PINK1, Parkin, thereby restoring autophagic and mitophagic processes and normal osteoblastic activity. In addition, using an established rat model of GIOP, we showed that VK2 administration can protect rats against the deleterious effects of Dex on bone by reinstating autophagic and mitophagic activities in bone tissues. Collectively, our results provide new insights into the role of osteoblast autophagy and mitophagy in GIOP. Additionally, the use of VK2 supplementation to augment osteoblast autophagy/mitophagy may significantly improve clinical outcomes of GIOP patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA