Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 264: 115934, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007911

RESUMEN

Breast cancer is one of the most common malignant tumors in women worldwide, with the majority of cases showing expression of estrogen receptors (ERs). Although drugs targeting ER have significantly improved survival rates in ER-positive patients, drug resistance remains an unmet clinical need. Fulvestrant, which overcomes selective estrogen receptor modulator (SERM) and AI (aromatase inhibitor) resistance, is currently the only long-acting selective estrogen receptor degrader (SERD) approved for both first and second-line settings. However, it fails to achieve satisfactory efficacy due to its poor solubility. Therefore, we designed and synthesized a series of novel scaffold (THC) derivatives, identifying their activities as ER antagonists and degraders. G-5b, the optimal compound, exhibited binding, antagonistic, degradation or anti-proliferative activities comparable to fulvestrant in ER+ wild type and mutants breast cancer cells. Notably, G-5b showed considerably improved stability and solubility. Research into the underlying mechanism indicated that G-5b engaged the proteasome pathway to degrade ER, subsequently inhibiting the ER signaling pathway and leading to the induction of apoptosis and cell cycle arrest events. Furthermore, G-5b displayed superior in vivo pharmacokinetics and pharmacodynamics properties, coupled with a favorable safety profile in the MCF-7 tamoxifen-resistant (MCF-7/TR) tumor xenograft model. Collectively, G-5b has emerged as a highly promising lead compound, offering potent antagonistic and degradation activities, positioning it as a novel long-acting SERD worthy of further refinement and optimization.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Antagonistas del Receptor de Estrógeno , Fulvestrant , Antagonistas de Estrógenos/farmacología , Tamoxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Receptor alfa de Estrógeno/metabolismo
2.
J Med Chem ; 64(14): 10286-10296, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34253025

RESUMEN

The neurotrophic receptor tyrosine kinase (NTRK) genes including NTRK1, NTRK2, and NTRK3 encode the tropomyosin receptor kinase (Trk) proteins TrkA, TrkB, and TrkC, respectively. So far, two TRK inhibitors, larotrectinib sulfate (LOXO-101 sulfate) and entrectinib (NMS-E628, RXDX-101), have been approved for clinical use in 2018 and 2019, respectively. To overcome acquired resistance, next-generation Trk inhibitors such as selitrectinib (LOXO-195) and repotrectinib (TPX-0005) have been developed and exhibit effectiveness to induce remission in patients with larotrectinib treatment failure. Herein, we report the identification and optimization of a series of macrocyclic compounds as potent pan-Trk (WT and MT) inhibitors that exhibited excellent physiochemical properties and good oral pharmacokinetics. Compound 10 was identified via optimization from the aspects of chemistry and pharmacokinetic properties, which showed good activity against wild and mutant TrkA/TrkC in in vitro and in vivo studies.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Aza/farmacología , Descubrimiento de Drogas , Compuestos Macrocíclicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos Aza/síntesis química , Compuestos Aza/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Ratas , Ratas Sprague-Dawley , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Receptor trkC/antagonistas & inhibidores , Receptor trkC/metabolismo , Relación Estructura-Actividad
3.
Regul Toxicol Pharmacol ; 122: 104886, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33556418

RESUMEN

LPM4870108 is a tropomyosin receptor kinase (Trk) inhibitor that is currently under consideration for human clinical trials. We characterized the toxicity and toxicokinetic properties of LPM4870108 following its oral administration to rhesus monkeys (5, 10, or 20 mg/kg/day for 4 weeks with a 4-week recovery period). No evidence of LPM4870108 toxicity was observed over this study as reflected by an absence of difference in body weight, ophthalmoscopy, urinalysis, gross, or histopathology findings. No significant differences in toxicity-related outcomes were detected when comparing LPM4870108 and control groups, and no significant treatment-related changes in food consumption, electrocardiogram results, blood pressure, hematological parameters, biochemical values, organ weight, or bone marrow parameters were observed. Treatment caused dose-dependent effects of gait disturbance, impaired balance, poor coordination, and decreased grip strength in all LPM4870108-treated animals, with these effects being attributable to excessive on-target Trk receptor inhibition. After the 4-week recovery period, all these abnormal treatment-related findings had fully or partially resolved. The toxicokinetic study of monkeys revealed that the LPM4870108 exposure increased with dose. Overall, LPM4870108 exhibited a safety profile in treated monkeys, indicating that the Highest Non-Severely Toxic Dose (HNSTD) for LPM4870108 in monkeys was 20 mg/kg/day.


Asunto(s)
Receptor trkA/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Femenino , Macaca mulatta , Masculino , Toxicocinética
4.
Cell Death Dis ; 8(10): e3137, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072702

RESUMEN

Emerging evidence suggests that microRNA (miRNA) and long noncoding RNA (lncRNA) play important roles in disease development. However, the mechanism underlying mRNA interaction with miRNA and lncRNA in idiopathic pulmonary fibrosis (IPF) remains unknown. This study presents a novel lnc-PCF that promotes the proliferation of TGF-ß1-activated epithelial cells through the regulation of map3k11 by directly targeting miR-344a-5p during pulmonary fibrogenesis. Bioinformatics and in vitro translation assay were performed to confirm whether or not lnc-PCF is an actual lncRNA. RNA fluorescent in situ hybridization (FISH) and nucleocytoplasmic separation showed that lnc-PCF is mainly expressed in the cytoplasm. Knockdown and knockin of lnc-PCF indicated that lnc-PCF could promote fibrogenesis by regulating the proliferation of epithelial cells activated by TGF-ß1 according to the results of xCELLigence real-time cell analysis system, flow cytometry, and western blot analysis. Computational analysis and a dual-luciferase reporter system were used to identify the target gene of miR-344a-5p, whereas RNA pull down, anti-AGO2 RNA immunoprecipitation, and rescue experiments were conducted to confirm the identity of this direct target. Further experiments verified that lnc-PCF promotes the proliferation of activated epithelial cells that were dependent on miR-344a-5p, which exerted its regulatory functions through its target gene map3k11. Finally, adenovirus packaging sh-lnc-PCF was sprayed into rat lung tissues to evaluate the therapeutic effect of lnc-PCF. These findings revealed that lnc-PCF can accelerate pulmonary fibrogenesis by directly targeting miR-344a-5p to regulate map3k11, which may be a potential therapeutic target in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proliferación Celular/fisiología , Células Epiteliales , Fibrosis Pulmonar Idiopática/enzimología , Fibrosis Pulmonar Idiopática/patología , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
5.
J Cell Mol Med ; 19(9): 2215-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26119034

RESUMEN

Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Miofibroblastos/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Recuento de Células , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dinaminas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Xantófilas/farmacología , Xantófilas/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo
6.
J Cell Mol Med ; 18(12): 2404-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25284615

RESUMEN

Apoptosis of type II alveolar epithelial cells (AECs-II) is a key determinant of initiation and progression of lung fibrosis. However, the mechanism of miR-30a participation in the regulation of AECs-II apoptosis is ambiguous. In this study, we investigated whether miR-30a could block AECs-II apoptosis by repressing mitochondrial fission dependent on dynamin-related protein-1 (Drp-1). The levels of miR-30a in vivo and in vitro were determined through quantitative real-time PCR (qRT-PCR). The inhibition of miR-30a in AECs-II apoptosis, mitochondrial fission and its dependence on Drp-1, and Drp-1 expression and translocation were detected using miR-30a mimic, inhibitor-transfection method (gain- and loss-of-function), or Drp-1 siRNA technology. Results showed that miR-30a decreased in lung fibrosis. Gain- and loss-of-function studies revealed that the up-regulation of miR-30a could decrease AECs-II apoptosis, inhibit mitochondrial fission, and reduce Drp-1 expression and translocation. MiR-30a mimic/inhibitor and Drp-1 siRNA co-transfection showed that miR-30a could inhibit the mitochondrial fission dependent on Drp-1. This study demonstrated that miR-30a inhibited AECs-II apoptosis by repressing the mitochondrial fission dependent on Drp-1, and could function as a novel therapeutic target for lung fibrosis.


Asunto(s)
Apoptosis/genética , Células Epiteliales/metabolismo , GTP Fosfohidrolasas/genética , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Alveolos Pulmonares/citología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Cell Mol Med ; 18(11): 2198-212, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25215580

RESUMEN

Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion-mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2 O2 - or bleomycin (BLM)-induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs-II) in vivo and in vitro. Our data show that AST blocks H2 O2 - or BLM-induced ROS generation and dose-dependent apoptosis in AECs-II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase-9, caspase-3, Nrf-2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs-II cells through the ROS-dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/administración & dosificación , Línea Celular , Citocromos c/biosíntesis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Fibrosis/patología , Radicales Libres , Humanos , Mitocondrias/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Xantófilas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...