Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966989

RESUMEN

Molecular docking remains an indispensable tool in computational biology and structure-based drug discovery. However, the correct prediction of binding poses remains a major challenge for molecular docking, especially for target proteins where a substrate binding induces significant reorganization of the active site. Here, we introduce an Induced Fit Docking (IFD) approach named AA/UA/CG-SA-IFD, which combines a hybrid All-Atom/United-Atom/Coarse-Grained model with Simulated Annealing. In this approach, the core region is represented by the All-Atom(AA) model, while the protein environment beyond the core region and the solvent are treated with either the United-Atom (UA) or the Coarse-Grained (CG) model. By combining the Elastic Network Model (ENM) for the CG region, the hybrid model ensures a reasonable description of ligand binding and the environmental effects of the protein, facilitating highly efficient and reliable sampling of ligand binding through Simulated Annealing (SA) at a high temperature. Upon validation with two testing sets, the AA/UA/CG-SA-IFD approach demonstrates remarkable accuracy and efficiency in induced fit docking, even for challenging cases where the docked poses significantly deviate from crystal structures.

2.
J Am Chem Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842938

RESUMEN

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of natural products. The enzyme mechanism for the biaryl phenol coupling reaction of the bicyclic CCNPs remains unclear. Herein, we report the discovery of two new arabinofuranosylated bicyclic CCNPs cihanmycins (CHMs) A (1) and B (2) from Amycolatopsis cihanbeyliensis DSM 45679 and the identification of the CHM biosynthetic gene cluster (cih BGC) by heterologous expression in Streptomyces lividans SBT18 to afford CHMs C (3) and D (4). The structure of 1 was confirmed by X-ray diffraction analysis. Three cytochrome P450 enzyme (CYP)-encoding genes cih26, cih32, and cih33 were individually inactivated in the heterologous host to produce CHMs E (5), F (6), and G (7), respectively. The structures of 5 and 6 indicated that Cih26 was responsible for the hydroxylation and epoxidation of the cinnamoyl moiety, and Cih32 should catalyze the ß-hydroxylation of three amino acid residues. Cih33 and its homologues DmlH and EpcH were biochemically verified to convert CHM G (7) with a monocyclic structure to a bicyclic skeleton of CHM C (3) through an intramolecular C-O phenol coupling reaction. The substrate 7-bound crystal structure of DmlH not only established the structure of 7, which was difficult for NMR analysis for displaying anomalous splitting signals, but also provided the binding mode of macrocyclic peptides recognized by these intramolecular C-O coupling CYPs. In addition, computational studies revealed a water-mediated diradical mechanism for the C-O phenol coupling reaction. These findings have shed important mechanistic insights into the CYP-catalyzed phenol coupling reactions.

3.
Adv Sci (Weinh) ; : e2403494, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943270

RESUMEN

Radical S-adenosyl-L-methionine (SAM) enzymes couple the reductive cleavage of SAM to radical-mediated transformations that have proven to be quite broad in scope. DesII is one such enzyme from the biosynthetic pathway of TDP-desosamine where it catalyzes a radical-mediated deamination. Previous studies have suggested that this reaction proceeds via direct elimination of ammonia from an α-hydroxyalkyl radical or its conjugate base (i.e., a ketyl radical) rather than 1,2-migration of the amino group to form a carbinolamine radical intermediate. However, without a crystal structure, the active site features responsible for this chemistry have remained largely unknown. The crystallographic studies described herein help to fill this gap by providing a structural description of the DesII active site. Computational analyses based on the solved crystal structure are consistent with direct elimination and indicate that an active site glutamate residue likely serves as a general base to promote deprotonation of the α-hydroxyalkyl radical intermediate and elimination of the ammonia group.

4.
J Am Chem Soc ; 146(20): 14278-14286, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727720

RESUMEN

The development of catalysts serves as the cornerstone of innovation in synthesis, as exemplified by the recent discovery of photoenzymes. However, the repertoire of naturally occurring enzymes repurposed by direct light excitation to catalyze new-to-nature photobiotransformations is currently limited to flavoproteins and keto-reductases. Herein, we shed light on imine reductases (IREDs) that catalyze the remote C(sp3)-C(sp3) bond formation, providing a previously elusive radical hydroalkylation of enamides for accessing chiral amines (45 examples with up to 99% enantiomeric excess). Beyond their natural function in catalyzing two-electron reductive amination reactions, upon direct visible-light excitation or in synergy with a synthetic photoredox catalyst, IREDs are repurposed to tune the non-natural photoinduced single-electron radical processes. By conducting wet mechanistic experiments and computational simulations, we unravel how engineered IREDs direct radical intermediates toward the productive and enantioselective pathway. This work represents a promising paradigm for harnessing nature's catalysts for new-to-nature asymmetric transformations that remain challenging through traditional chemocatalytic methods.

5.
ACS Appl Mater Interfaces ; 16(22): 29235-29247, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769743

RESUMEN

Expanding the functions and applications of DNA by integrating noncanonical bases and structures into biopolymers is a continuous scientific effort. An adenine-rich strand (A-strand) is introduced as functional scaffold revealing, in the presence of the low-molecular-weight cofactor cyanuric acid (CA, pKa 6.9), supramolecular hydrogel-forming efficacies demonstrating multiple pH-responsiveness. At pH 1.2, the A-strand transforms into a parallel A-motif duplex hydrogel cross-linked by AH+-H+A units due to the protonation of adenine (pKa 3.5). At pH 5.2, and in the presence of coadded CA, a helicene-like configuration is formed between adenine and protonated CA, generating a parallel A-CA triplex cross-linked hydrogel. At pH 8.0, the hydrogel undergoes transition into a liquid state by deprotonation of CA cofactor units and disassembly of A-CA triplex into its constituent components. Density functional theory calculations and molecular dynamics simulations, supporting the structural reconfigurations of A-strand in the presence of CA, are performed. The sequential pH-stimulated hydrogel states are rheometrically characterized. The hydrogel framework is loaded with fluorescein-labeled insulin, and the pH-stimulated release of insulin from the hydrogel across the pH barriers present in the gastrointestinal tract is demonstrated. The results provide principles for future application of the hydrogel for oral insulin administration for diabetes.


Asunto(s)
Adenina , ADN , Hidrogeles , Triazinas , Hidrogeles/química , Concentración de Iones de Hidrógeno , ADN/química , Adenina/química , Triazinas/química , Simulación de Dinámica Molecular , Insulina/química
6.
J Phys Chem B ; 128(23): 5567-5575, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38814729

RESUMEN

Methyl-parathion hydrolase (MPH), which evolved from dihydrocoumarin hydrolase, offers one of the most efficient enzymes for the hydrolysis of methyl-parathion. Interestingly, the substrate preference of MPH shifts from the methyl-parathion to the lactone dihydrocoumarin (DHC) after its mutation of five specific residues (R72L, L273F, L258H, T271I, and S193Δ, m5-MPH). Here, extensive QM/MM calculations and MM MD simulations have been used to delve into the structure-function relationship of MPH enzymes and plausible mechanisms for the chemical and nonchemical steps, including the transportation and binding of the substrate DHC to the active site, the hydrolysis reaction, and the product release. The results reveal that the five mutations remodel the active pocket and reposition DHC within the active site, leading to stronger enzyme-substrate interactions. The MM/GBSA-estimated binding free energies are about -20.7 kcal/mol for m5-MPH and -17.1 kcal/mol for wild-type MPH. Furthermore, this conformational adjustment of the protein may facilitate the chemical step of DHC hydrolysis and the product release, although there is a certain influence on the substrate transport. The hydrolytic reaction begins with the nucleophilic attack of the bridging OH- with the energy barriers of 22.0 and 18.0 kcal/mol for the wild-type and m5-MPH enzymes, respectively, which is rate-determining for the entire process. Unraveling these mechanistic intricacies may help in the understanding of the natural evolution of enzymes for diverse substrates and establish the enzyme structure-function relationship.


Asunto(s)
Cumarinas , Simulación de Dinámica Molecular , Teoría Cuántica , Cumarinas/química , Cumarinas/metabolismo , Hidrólisis , Dominio Catalítico , Especificidad por Sustrato , Termodinámica , Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/genética
7.
J Agric Food Chem ; 72(22): 12685-12695, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771136

RESUMEN

Halogenation plays a unique role in the design of agrochemicals. Enzymatic halogenation reactions have attracted great attention due to their excellent specificity and mild reaction conditions. S-adenosyl-l-methionine (SAM)-dependent halogenases mediate the nucleophilic attack of halide ions (X-) to SAM to produce 5'-XDA. However, only 11 SAM-dependent fluorinases and 3 chlorinases have been reported, highlighting the desire for additional halogenases. SAM-dependent hydroxide adenosyltransferase (HATase) has a similar reaction mechanism as halogenases but uses water as a substrate instead of halide ions. Here, we explored a HATase from the thermophile Thermotoga maritima MSB8 and transformed it into a halogenase. We identified a key dyad W8L/V71T for the halogenation reaction. We also obtained the best performing mutants for each halogenation reaction: M1, M2 and M4 for Cl-, Br- and I-, respectively. The M4 mutant retained the thermostability of HATase in the iodination reaction at 80 °C, which surpasses the natural halogenase SalL. QM/MM revealed that these mutants bind halide ions with more suitable angles for nucleophilic attack of C5' of SAM, thus conferring halogenation capabilities. Our work achieved the halide ion specificity of halogenases and generated thermostable halogenases for the first time, which provides new opportunities to expand the halogenase repertoire from hydroxylase.


Asunto(s)
Proteínas Bacterianas , Thermotoga maritima , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Thermotoga maritima/química , Halogenación , Especificidad por Sustrato , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Biocatálisis
8.
JACS Au ; 4(4): 1591-1604, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665654

RESUMEN

P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.

9.
J Chem Theory Comput ; 20(9): 3462-3472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38671391

RESUMEN

Adaptive quantum mechanics/molecular mechanics (QM/MM) reclassifies on-the-fly a molecule or molecular fragment as QM or MM during dynamics simulations without abrupt changes in the energy or forces. Notably, the permuted adaptive-partitioning (PAP) algorithms have been applied to simulate a hydrated proton, with a mobile QM zone anchored at a pseudoatom called a proton indicator. The position of the proton indicator approximates the location of the delocalized excess proton, yielding a smooth trajectory of the proton diffusing via the Grotthuss mechanism in aqueous solutions. The mobile QM zone, which has been taken to be a sphere with a preset radius, follows the proton wherever it goes. Although the simulations are successful, the use of a spherical QM zone has one disadvantage: A large preset radius must be utilized to minimize the chance of missing water molecules that are important to proton translocation. A large radius leads to a large QM zone, which is computationally expensive. In this work, we report a new way to set up the QM zone, where one includes only the water molecules important to proton transfer. The importance of a given water molecule is quantified by its "weight" that depends on its relation to the reaction path of proton transfer. The weight varies smoothly, ensuring that a water molecule gradually appears in or disappears from the QM zone without abrupt changes, as required by the PAP method. Consequently, the shape of the QM zone evolves on-the-fly, keeping the QM zone as small as possible and as large as necessary. Test simulations demonstrate that the new algorithm significantly improves the computation efficiency while maintaining the proper descriptions of proton transfer in bulk water.

10.
Angew Chem Int Ed Engl ; 63(27): e202402673, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656534

RESUMEN

Repurposing enzymes to catalyze non-natural asymmetric transformations that are difficult to achieve using traditional chemical methods is of significant importance. Although radical C-O bond formation has emerged as a powerful approach for constructing oxygen-containing compounds, controlling the stereochemistry poses a great challenge. Here we present the development of a dual bio-/photo-catalytic system comprising an ene-reductase and an organic dye for achieving stereoselective lactonizations. By integrating directed evolution and photoinduced single electron oxidation, we repurposed engineered ene-reductases to steer non-natural radical C-O formations (one C-O bond for hydrolactonizations and lactonization-alkylations while two C-O bonds for lactonization-oxygenations). This dual catalysis gave a new approach to a diverse array of enantioenhanced 5- and 6-membered lactones with vicinal stereocenters, part of which bears a quaternary stereocenter (up to 99 % enantiomeric excess, up to 12.9 : 1 diastereomeric ratio). Detailed mechanistic studies, including computational simulations, uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rh6G.

11.
J Chem Inf Model ; 64(6): 1892-1906, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38441880

RESUMEN

Improving the generalization ability of scoring functions remains a major challenge in protein-ligand binding affinity prediction. Many machine learning methods are limited by their reliance on single-modal representations, hindering a comprehensive understanding of protein-ligand interactions. We introduce a graph-neural-network-based scoring function that utilizes a triplet contrastive learning loss to improve protein-ligand representations. In this model, three-dimensional complex representations and the fusion of two-dimensional ligand and coarse-grained pocket representations converge while distancing from decoy representations in latent space. After rigorous validation on multiple external data sets, our model exhibits commendable generalization capabilities compared to those of other deep learning-based scoring functions, marking it as a promising tool in the realm of drug discovery. In the future, our training framework can be extended to other biophysical- and biochemical-related problems such as protein-protein interaction and protein mutation prediction.


Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Ligandos , Mutación , Redes Neurales de la Computación
12.
Angew Chem Int Ed Engl ; 63(14): e202318629, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38299700

RESUMEN

Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.


Asunto(s)
Flavinas , Oxigenasas de Función Mixta , Flavinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Oxidorreductasas , Compuestos Orgánicos
13.
J Chem Inf Model ; 64(7): 2263-2274, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37433009

RESUMEN

Water network rearrangement from the ligand-unbound state to the ligand-bound state is known to have significant effects on the protein-ligand binding interactions, but most of the current machine learning-based scoring functions overlook these effects. In this study, we endeavor to construct a comprehensive and realistic deep learning model by incorporating water network information into both ligand-unbound and -bound states. In particular, extended connectivity interaction features were integrated into graph representation, and graph transformer operator was employed to extract features of the ligand-unbound and -bound states. Through these efforts, we developed a water network-augmented two-state model called ECIFGraph::HM-Holo-Apo. Our new model exhibits satisfactory performance in terms of scoring, ranking, docking, screening, and reverse screening power tests on the CASF-2016 benchmark. In addition, it can achieve superior performance in large-scale docking-based virtual screening tests on the DEKOIS2.0 data set. Our study highlights that the use of a water network-augmented two-state model can be an effective strategy to bolster the robustness and applicability of machine learning-based scoring functions, particularly for targets with hydrophilic or solvent-exposed binding pockets.


Asunto(s)
Proteínas , Agua , Ligandos , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Proteínas/metabolismo , Unión Proteica
14.
J Inorg Biochem ; 251: 112426, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37980877

RESUMEN

The diiron active site is pivotal in catalyzing transformations in both biological and chemical systems. Recently, a range of biomimetic diiron catalysts have been synthesized, drawing inspiration from the active architecture of soluble methane monooxygenase (sMMO). These catalysts have been successfully deployed for the dehydrogenation of indolines, marking a significant advancement in the field. Using density functional theory (DFT) calculations, we have identified a novel mechanistic pathway that governs the dehydrogenation of indolines catalyzed by a biomimetic diiron complex. Specifically, this reaction is facilitated by the transfer of a hybrid atom from the C1 position of the substrate to the distal oxygen atom of the Fe(III)Fe(III)-1,1-µ-hydroperoxy active species. This transfer serves as the rate-limiting step for the heterolytic cleavage of the OO bond, ultimately generating the substrate cation. The mechanism we propose aligns well with mechanistic investigations incorporating both kinetic isotope effect (KIE) measurements and evaluations of stereochemical selectivity. This research contributes to the broader scientific understanding of catalysis involving biomimetic diiron complexes and offers valuable insights into the catalytic behaviors of non-heme diiron metalloenzymes.


Asunto(s)
Biomimética , Metaloproteínas , Dominio Catalítico , Catálisis , Oxígeno/química
15.
J Am Chem Soc ; 146(1): 250-262, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147793

RESUMEN

We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.


Asunto(s)
Ciclamas , Hierro , Hierro/química , Oxigenasas , Ligandos , Biomimética , Oxígeno/química , Hidrógeno , Compuestos Férricos
16.
J Am Chem Soc ; 145(50): 27626-27638, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064642

RESUMEN

The practical catalytic enantioselective cis-dihydroxylation of olefins that utilize earth-abundant first-row transition metal catalysts under environmentally friendly conditions is an important yet challenging task. Inspired by the cis-dihydroxylation reactions catalyzed by Rieske dioxygenases and non-heme iron models, we report the biologically inspired cis-dihydroxylation catalysis that employs an inexpensive and readily available mononuclear non-heme manganese complex bearing a tetradentate nitrogen-donor ligand and aqueous hydrogen peroxide (H2O2) and potassium peroxymonosulfate (KHSO5) as terminal oxidants. A wide range of olefins are efficiently oxidized to enantioenriched cis-diols in practically useful yields with excellent cis-dihydroxylation selectivity and enantioselectivity (up to 99% ee). Mechanistic studies, such as isotopically 18O-labeled water experiments, and density functional theory (DFT) calculations support that a manganese(V)-oxo-hydroxo (HO-MnV═O) species, which is formed via the water-assisted heterolytic O-O bond cleavage of putative manganese(III)-hydroperoxide and manganese(III)-peroxysulfate precursors, is the active oxidant that effects the cis-dihydroxylation of olefins; this is reminiscent of the frequently postulated iron(V)-oxo-hydroxo (HO-FeV═O) species in the catalytic arene and alkene cis-dihydroxylation reactions by Rieske dioxygenases and synthetic non-heme iron models. Further, DFT calculations for the mechanism of the HO-MnV═O-mediated enantioselective cis-dihydroxylation of olefins reveal that the first oxo attack step controls the enantioselectivity, which exhibits a high preference for cis-dihydroxylation over epoxidation. In this study, we are able to replicate both the catalytic function and the key chemical principles of Rieske dioxygenases in mononuclear non-heme manganese-catalyzed enantioselective cis-dihydroxylation of olefins.


Asunto(s)
Dioxigenasas , Peróxido de Hidrógeno/química , Manganeso , Oxidación-Reducción , Alquenos/química , Estereoisomerismo , Hierro/química , Oxidantes , Catálisis , Agua
17.
J Am Chem Soc ; 145(50): 27886-27899, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055632

RESUMEN

The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Quinolonas , Catálisis , Compuestos Ferrosos/química
18.
J Am Chem Soc ; 145(46): 25304-25317, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955571

RESUMEN

Particulate methane monooxygenase (pMMO) plays a critical role in catalyzing the conversion of methane to methanol, constituting the initial step in the C1 metabolic pathway within methanotrophic bacteria. However, the membrane-bound pMMO's structure and catalytic mechanism, notably the copper's valence state and genuine active site for methane oxidation, have remained elusive. Based on the recently characterized structure of membrane-bound pMMO, extensive computational studies were conducted to address these long-standing issues. A comprehensive analysis comparing the quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulated structures with cryo-EM data indicates that both the CuC and CuD sites tend to stay in the Cu(I) valence state within the membrane environment. Additionally, the concurrent presence of Cu(I) at both CuC and CuD sites leads to the significant reduction of the ligand-binding cavity situated between them, making it less likely to accommodate a reductant molecule such as durohydroquinone (DQH2). Subsequent QM/MM calculations reveal that the CuD(I) site is more reactive than the CuC(I) site in oxygen activation, en route to H2O2 formation and the generation of Cu(II)-O•- species. Finally, our simulations demonstrate that the natural reductant ubiquinol (CoQH2) assumes a productive binding conformation at the CuD(I) site but not at the CuC(I) site. This provides evidence that the true active site of membrane-bound pMMOs may be CuD rather than CuC. These findings clarify pMMO's catalytic mechanism and emphasize the membrane environment's pivotal role in modulating the coordination structure and the activity of copper centers within pMMO.


Asunto(s)
Cobre , Sustancias Reductoras , Cobre/química , Peróxido de Hidrógeno , Metano/química , Oxidación-Reducción , Oxigenasas/metabolismo
19.
Opt Lett ; 48(22): 6052-6055, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966787

RESUMEN

Dual-functioning multiple quantum well (MQW) diodes can simultaneously transmit and receive information through visible light. Here, we report vertically stacked red, green, and blue (RGB) MQW diodes for light detection and display applications. Both blue and green MQW diodes are monolithically integrated with distributed Bragg reflector (DBR) filters to realize the separation of light. The versatile RGB MQW transmitter/receiver system not only creates full-color display but also effectively separates RGB light into various colors. These results open feasible routes to generate multifunctional device for the development of full-color display and light receiver.

20.
Opt Lett ; 48(21): 5659-5662, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910727

RESUMEN

Lightweight, low-cost, and simple systems for magnetic field sensing are in high demand. Here, we demonstrate such a magnetic field sensing system by integrating a light source, detector, magnetic fluid (MF), and plastic optical fiber (POF). Two bifunctional AlGaInP diodes with identical multiple-quantum well structures separately function as the light source and the detector of the sensing system due to the partial overlap between the electroluminescence and responsivity spectra. Magnetic field sensing is realized by changing the amount of reflected light due to the change in reflection coefficient of the POF/MF interface caused by the ambient magnetic field. The chip-integrated POF magnetic field sensor exhibits a reliable operation with a detection range from 10 Gs to 400 Gs. The results indicate that the chip-integrated POF sensor is promising for magnetic field sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...